USGS/SLU Moment Tensor Solution ENS 2023/06/16 16:38:28:8 46.21 -0.77 10.0 5.0 France Stations used: C4.CERNS CH.BRANT CH.COLLE CH.GIMEL CH.LASAR CH.MESRY CH.PERON CH.SALEV CH.VINZL FR.ABJF FR.ATE FR.BALS FR.BANN FR.BARI FR.BEGF FR.BESN FR.BIMF FR.BORF FR.BOUC FR.BOUF FR.BRGF FR.BSCF FR.CHIF FR.CHLF FR.CLAF FR.CLF FR.COLF FR.CRAS FR.CRNF FR.CSCF FR.CURIE FR.DAUF FR.DUNF FR.FAHY FR.FILF FR.FNEB FR.FOURG FR.GARF FR.GENF FR.GIZF FR.GNEF FR.GOTF FR.GRN FR.GUEF FR.GZNF FR.HRSF FR.IRAF FR.LABF FR.LATF FR.LEUC FR.LGIF FR.LOCF FR.LOUF FR.LRVF FR.MERIC FR.MLS FR.MTNF FR.OG35 FR.OGCB FR.OGCC FR.OGCN FR.OGDF FR.OGGL FR.OGMY FR.OGS1 FR.OGSM FR.OLIV FR.ORDF FR.OSSF FR.PAND FR.PYHE FR.RESF FR.REST FR.REYF FR.RIAF FR.RIVEL FR.RUFF FR.SALF FR.SAUF FR.SDOF FR.SGSF FR.SLVF FR.SOMF FR.SRNF FR.SROF FR.TERF FR.TSDF FR.URDF FR.VALC FR.VALM FR.VERF FR.VIEF GB.JSA MT.AVM MT.AVP XP.FR01A Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.80e+23 dyne-cm Mw = 4.77 Z = 11 km Plane Strike Dip Rake NP1 87 85 -160 NP2 355 70 -5 Principal Axes: Axis Value Plunge Azimuth T 1.80e+23 11 219 N 0.00e+00 69 99 P -1.80e+23 17 313 Moment Tensor: (dyne-cm) Component Value Mxx 2.93e+22 Mxy 1.67e+23 Mxz -6.00e+22 Myy -1.92e+22 Myz 1.73e+22 Mzz -1.01e+22 ------######## -----------########### ---------------############# - -------------############# --- P --------------############## ---- --------------############### -----------------------############### ------------------------################ -------------------------############### --------------------------################ --------------------------##############-- -------------------------#---------------- ##########################---------------- #########################--------------- #########################--------------- ########################-------------- #######################------------- ### ################------------ # T ###############----------- ###############---------- ##############-------- #########----- Global CMT Convention Moment Tensor: R T P -1.01e+22 -6.00e+22 -1.73e+22 -6.00e+22 2.93e+22 -1.67e+23 -1.73e+22 -1.67e+23 -1.92e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230616163828/index.html |
STK = -5 DIP = 70 RAKE = -5 MW = 4.77 HS = 11.0
The NDK file is 20230616163828.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2023/06/16 16:38:28:8 46.21 -0.77 10.0 5.0 France Stations used: C4.CERNS CH.BRANT CH.COLLE CH.GIMEL CH.LASAR CH.MESRY CH.PERON CH.SALEV CH.VINZL FR.ABJF FR.ATE FR.BALS FR.BANN FR.BARI FR.BEGF FR.BESN FR.BIMF FR.BORF FR.BOUC FR.BOUF FR.BRGF FR.BSCF FR.CHIF FR.CHLF FR.CLAF FR.CLF FR.COLF FR.CRAS FR.CRNF FR.CSCF FR.CURIE FR.DAUF FR.DUNF FR.FAHY FR.FILF FR.FNEB FR.FOURG FR.GARF FR.GENF FR.GIZF FR.GNEF FR.GOTF FR.GRN FR.GUEF FR.GZNF FR.HRSF FR.IRAF FR.LABF FR.LATF FR.LEUC FR.LGIF FR.LOCF FR.LOUF FR.LRVF FR.MERIC FR.MLS FR.MTNF FR.OG35 FR.OGCB FR.OGCC FR.OGCN FR.OGDF FR.OGGL FR.OGMY FR.OGS1 FR.OGSM FR.OLIV FR.ORDF FR.OSSF FR.PAND FR.PYHE FR.RESF FR.REST FR.REYF FR.RIAF FR.RIVEL FR.RUFF FR.SALF FR.SAUF FR.SDOF FR.SGSF FR.SLVF FR.SOMF FR.SRNF FR.SROF FR.TERF FR.TSDF FR.URDF FR.VALC FR.VALM FR.VERF FR.VIEF GB.JSA MT.AVM MT.AVP XP.FR01A Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.80e+23 dyne-cm Mw = 4.77 Z = 11 km Plane Strike Dip Rake NP1 87 85 -160 NP2 355 70 -5 Principal Axes: Axis Value Plunge Azimuth T 1.80e+23 11 219 N 0.00e+00 69 99 P -1.80e+23 17 313 Moment Tensor: (dyne-cm) Component Value Mxx 2.93e+22 Mxy 1.67e+23 Mxz -6.00e+22 Myy -1.92e+22 Myz 1.73e+22 Mzz -1.01e+22 ------######## -----------########### ---------------############# - -------------############# --- P --------------############## ---- --------------############### -----------------------############### ------------------------################ -------------------------############### --------------------------################ --------------------------##############-- -------------------------#---------------- ##########################---------------- #########################--------------- #########################--------------- ########################-------------- #######################------------- ### ################------------ # T ###############----------- ###############---------- ##############-------- #########----- Global CMT Convention Moment Tensor: R T P -1.01e+22 -6.00e+22 -1.73e+22 -6.00e+22 2.93e+22 -1.67e+23 -1.73e+22 -1.67e+23 -1.92e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230616163828/index.html |
W-phase Moment Tensor (Mww) Moment 2.271e+16 N-m Magnitude 4.84 Mww Depth 11.5 km Percent DC 68% Half Duration 0.70 s Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 266 78 170 NP2 359 80 13 Principal Axes Axis Value Plunge Azimuth T 2.051e+16 N-m 16 223 N 0.388e+16 N-m 74 36 P -2.440e+16 N-m 2 |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 -5 85 0 4.43 0.4039 WVFGRD96 2.0 -5 85 -5 4.53 0.5180 WVFGRD96 3.0 -5 80 0 4.58 0.5726 WVFGRD96 4.0 -5 75 0 4.62 0.6098 WVFGRD96 5.0 -5 75 0 4.65 0.6368 WVFGRD96 6.0 -5 75 0 4.67 0.6580 WVFGRD96 7.0 -5 75 0 4.70 0.6764 WVFGRD96 8.0 -5 70 0 4.73 0.6937 WVFGRD96 9.0 -5 70 0 4.75 0.6978 WVFGRD96 10.0 -5 70 -5 4.76 0.7009 WVFGRD96 11.0 -5 70 -5 4.77 0.7020 WVFGRD96 12.0 -5 70 -5 4.78 0.7010 WVFGRD96 13.0 -5 70 -5 4.79 0.6983 WVFGRD96 14.0 -5 70 -5 4.80 0.6939 WVFGRD96 15.0 -5 70 -5 4.81 0.6887 WVFGRD96 16.0 -5 70 -5 4.82 0.6822 WVFGRD96 17.0 -5 75 -5 4.82 0.6752 WVFGRD96 18.0 -5 75 -5 4.83 0.6679 WVFGRD96 19.0 -5 75 -5 4.84 0.6599 WVFGRD96 20.0 -5 75 -5 4.85 0.6513 WVFGRD96 21.0 -5 75 -5 4.85 0.6424 WVFGRD96 22.0 -5 75 -5 4.86 0.6331 WVFGRD96 23.0 -5 75 -5 4.87 0.6241 WVFGRD96 24.0 -5 75 -5 4.87 0.6148 WVFGRD96 25.0 -5 75 -5 4.88 0.6053 WVFGRD96 26.0 -5 75 -5 4.89 0.5964 WVFGRD96 27.0 -5 75 -5 4.89 0.5876 WVFGRD96 28.0 -5 75 -5 4.90 0.5788 WVFGRD96 29.0 -5 80 -5 4.90 0.5699
The best solution is
WVFGRD96 11.0 -5 70 -5 4.77 0.7020
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: