USGS/SLU Moment Tensor Solution ENS 2023/04/15 22:10:42:3 45.03 18.38 10.0 4.4 Bosnia Stations used: AC.BCI BS.BLKB CZ.JAVC HU.BEHE HU.BUD HU.EGYH HU.KOVH HU.MORH HU.SOP HU.TIH IV.SGRT IV.TREM MN.BLY MN.DIVS MN.PDG MN.TIR MN.TRI NI.DST2 NI.VINO OE.ARSA OE.CONA OE.CSNA OE.MOA OE.RONA OE.SOKA OE.VIE OX.ACOM OX.DRE OX.MPRI OX.PRED OX.SABO RO.BANR RO.BZS RO.GZR RO.LOT RO.RMGR RO.SRE RO.SURR SK.MODS Y5.BH02A Y5.BH06A Y5.BH08A Y5.BH09A Y5.BH10A Y5.BH11A Y5.BH12A Y5.BH13A Y5.BH16A Y5.BH18A Y5.BH20A Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.91e+21 dyne-cm Mw = 3.90 Z = 10 km Plane Strike Dip Rake NP1 154 76 154 NP2 250 65 15 Principal Axes: Axis Value Plunge Azimuth T 8.91e+21 28 110 N 0.00e+00 61 308 P -8.91e+21 8 204 Moment Tensor: (dyne-cm) Component Value Mxx -6.58e+21 Mxy -5.41e+21 Mxz -1.49e+20 Myy 4.81e+21 Myz 3.93e+21 Mzz 1.77e+21 -------------- ##-------------------- #####----------------------- ######------------------------ #########------------------------- ##########-------------------------- ############---------------#######---- #############------##################### ##############-######################### ############----########################## #########--------######################### #######-----------######################## #####--------------############### ##### ##-----------------############## T #### #-------------------############# #### --------------------################## --------------------################ --------------------############## --------------------########## ----- ------------######## -- P --------------### ------------- Global CMT Convention Moment Tensor: R T P 1.77e+21 -1.49e+20 -3.93e+21 -1.49e+20 -6.58e+21 5.41e+21 -3.93e+21 5.41e+21 4.81e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230415221042/index.html |
STK = 250 DIP = 65 RAKE = 15 MW = 3.90 HS = 10.0
The NDK file is 20230415221042.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2023/04/15 22:10:42:3 45.03 18.38 10.0 4.4 Bosnia Stations used: AC.BCI BS.BLKB CZ.JAVC HU.BEHE HU.BUD HU.EGYH HU.KOVH HU.MORH HU.SOP HU.TIH IV.SGRT IV.TREM MN.BLY MN.DIVS MN.PDG MN.TIR MN.TRI NI.DST2 NI.VINO OE.ARSA OE.CONA OE.CSNA OE.MOA OE.RONA OE.SOKA OE.VIE OX.ACOM OX.DRE OX.MPRI OX.PRED OX.SABO RO.BANR RO.BZS RO.GZR RO.LOT RO.RMGR RO.SRE RO.SURR SK.MODS Y5.BH02A Y5.BH06A Y5.BH08A Y5.BH09A Y5.BH10A Y5.BH11A Y5.BH12A Y5.BH13A Y5.BH16A Y5.BH18A Y5.BH20A Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.91e+21 dyne-cm Mw = 3.90 Z = 10 km Plane Strike Dip Rake NP1 154 76 154 NP2 250 65 15 Principal Axes: Axis Value Plunge Azimuth T 8.91e+21 28 110 N 0.00e+00 61 308 P -8.91e+21 8 204 Moment Tensor: (dyne-cm) Component Value Mxx -6.58e+21 Mxy -5.41e+21 Mxz -1.49e+20 Myy 4.81e+21 Myz 3.93e+21 Mzz 1.77e+21 -------------- ##-------------------- #####----------------------- ######------------------------ #########------------------------- ##########-------------------------- ############---------------#######---- #############------##################### ##############-######################### ############----########################## #########--------######################### #######-----------######################## #####--------------############### ##### ##-----------------############## T #### #-------------------############# #### --------------------################## --------------------################ --------------------############## --------------------########## ----- ------------######## -- P --------------### ------------- Global CMT Convention Moment Tensor: R T P 1.77e+21 -1.49e+20 -3.93e+21 -1.49e+20 -6.58e+21 5.41e+21 -3.93e+21 5.41e+21 4.81e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230415221042/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 240 75 -10 3.46 0.2682 WVFGRD96 2.0 240 60 -15 3.62 0.3404 WVFGRD96 3.0 240 50 -15 3.69 0.3761 WVFGRD96 4.0 245 55 0 3.71 0.4076 WVFGRD96 5.0 245 60 5 3.74 0.4339 WVFGRD96 6.0 250 60 15 3.77 0.4558 WVFGRD96 7.0 250 65 15 3.80 0.4753 WVFGRD96 8.0 250 60 15 3.86 0.4915 WVFGRD96 9.0 250 65 15 3.88 0.4991 WVFGRD96 10.0 250 65 15 3.90 0.5037 WVFGRD96 11.0 250 65 15 3.92 0.5030 WVFGRD96 12.0 250 65 10 3.93 0.4987 WVFGRD96 13.0 250 70 10 3.95 0.4918 WVFGRD96 14.0 250 70 10 3.96 0.4820 WVFGRD96 15.0 250 70 10 3.97 0.4698 WVFGRD96 16.0 250 70 5 3.98 0.4555 WVFGRD96 17.0 250 70 5 3.99 0.4396 WVFGRD96 18.0 250 70 5 4.00 0.4217 WVFGRD96 19.0 250 70 5 4.01 0.4026 WVFGRD96 20.0 250 70 5 4.01 0.3832 WVFGRD96 21.0 250 70 0 4.02 0.3643 WVFGRD96 22.0 250 70 0 4.02 0.3462 WVFGRD96 23.0 250 70 5 4.02 0.3293 WVFGRD96 24.0 70 70 10 4.02 0.3156 WVFGRD96 25.0 160 85 -25 4.02 0.3101 WVFGRD96 26.0 160 85 -25 4.03 0.3086 WVFGRD96 27.0 160 85 -25 4.04 0.3066 WVFGRD96 28.0 160 85 -25 4.04 0.3032 WVFGRD96 29.0 340 90 25 4.05 0.2971
The best solution is
WVFGRD96 10.0 250 65 15 3.90 0.5037
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: