USGS/SLU Moment Tensor Solution ENS 2022/11/09 06:07:27:0 43.93 13.31 10.0 5.8 Marotta, IT Stations used: CH.BERNI CH.DAVOX CH.FIESA CH.FUORN CH.LIENZ CH.VMV CR.STON CR.ZAG GE.MARCO GR.FUR GR.UBR HU.BEHE HU.EGYH HU.KOVH HU.MORH HU.MPLH HU.SOP HU.TIH IV.AOI IV.APEC IV.ARCI IV.ARVD IV.ASSB IV.ATMI IV.ATVO IV.BDI IV.BOSL IV.BRIS IV.BSSO IV.BULG IV.CAFI IV.CAMP IV.CASP IV.CBAC IV.CELB IV.CERT IV.CESI IV.CESX IV.CFMN IV.CING IV.CMPR IV.CMSN IV.CNIS IV.CRE IV.CRMI IV.CRTC IV.CSNT IV.CSOB IV.CTI IV.DGI IV.FAGN IV.FDMO IV.FIAM IV.FIR IV.FNVD IV.FVI IV.GIGS IV.GIUL IV.GUAR IV.GUMA IV.INTR IV.IOCA IV.LATE IV.LMD IV.LNSS IV.LPEL IV.MA9 IV.MCEL IV.MELA IV.MGAB IV.MRLC IV.MSAG IV.MSSA IV.MTCE IV.MTRZ IV.MTSN IV.MURB IV.NARO IV.NRCA IV.OSSC IV.OVO IV.PALZ IV.PAOL IV.PARC IV.PIEI IV.PIGN IV.PII IV.PLMA IV.POFI IV.PSB1 IV.PTCC IV.PTMR IV.PTQR IV.RDP IV.RMP IV.ROSPO IV.SACS IV.SEI IV.SGG IV.SIRI IV.SNTG IV.SORR IV.SRES IV.SSFR IV.STAL IV.T0110 IV.TERO IV.TOLF IV.TREM IV.TRTR IV.VAGA IV.VBKN IV.VCRE IV.VISG IV.VITU IV.VIVA IV.VMGN IV.VTIR IV.VVDG IV.VVLD IV.ZCCA MN.AQU MN.BLY MN.CUC MN.PDG MN.SENA MN.TRI MN.VLC OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.FETA OE.KBA OE.LESA OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA OE.SQTA OE.WATA OE.WTTA OX.ACOM OX.AGOR OX.BAD OX.BOO OX.CAE OX.CIMO OX.CLUD OX.FUSE OX.MARN OX.MLN OX.MPRI OX.PLRO OX.PRED OX.SABO OX.VARN SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.66e+24 dyne-cm Mw = 5.55 Z = 8 km Plane Strike Dip Rake NP1 290 65 65 NP2 158 35 132 Principal Axes: Axis Value Plunge Azimuth T 2.66e+24 62 161 N 0.00e+00 23 301 P -2.66e+24 16 38 Moment Tensor: (dyne-cm) Component Value Mxx -9.76e+23 Mxy -1.37e+24 Mxz -1.62e+24 Myy -8.71e+23 Myz -8.36e+22 Mzz 1.85e+24 -------------- ##-------------------- ###-------------------- -- ###--------------------- P --- ####---------------------- ----- ####-------------------------------- ####-######--------------------------- ------###############------------------- ------###################--------------- -------#######################------------ -------##########################--------- -------############################------- --------#############################----- -------############## ##############-- --------############# T ###############- --------############ ############### --------############################ ---------######################### --------###################### ----------################## ----------############ -------------- Global CMT Convention Moment Tensor: R T P 1.85e+24 -1.62e+24 8.36e+22 -1.62e+24 -9.76e+23 1.37e+24 8.36e+22 1.37e+24 -8.71e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221109060727/index.html |
STK = 290 DIP = 65 RAKE = 65 MW = 5.55 HS = 8.0
The NDK file is 20221109060727.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2022/11/09 06:07:27:0 43.93 13.31 10.0 5.8 Marotta, IT Stations used: CH.BERNI CH.DAVOX CH.FIESA CH.FUORN CH.LIENZ CH.VMV CR.STON CR.ZAG GE.MARCO GR.FUR GR.UBR HU.BEHE HU.EGYH HU.KOVH HU.MORH HU.MPLH HU.SOP HU.TIH IV.AOI IV.APEC IV.ARCI IV.ARVD IV.ASSB IV.ATMI IV.ATVO IV.BDI IV.BOSL IV.BRIS IV.BSSO IV.BULG IV.CAFI IV.CAMP IV.CASP IV.CBAC IV.CELB IV.CERT IV.CESI IV.CESX IV.CFMN IV.CING IV.CMPR IV.CMSN IV.CNIS IV.CRE IV.CRMI IV.CRTC IV.CSNT IV.CSOB IV.CTI IV.DGI IV.FAGN IV.FDMO IV.FIAM IV.FIR IV.FNVD IV.FVI IV.GIGS IV.GIUL IV.GUAR IV.GUMA IV.INTR IV.IOCA IV.LATE IV.LMD IV.LNSS IV.LPEL IV.MA9 IV.MCEL IV.MELA IV.MGAB IV.MRLC IV.MSAG IV.MSSA IV.MTCE IV.MTRZ IV.MTSN IV.MURB IV.NARO IV.NRCA IV.OSSC IV.OVO IV.PALZ IV.PAOL IV.PARC IV.PIEI IV.PIGN IV.PII IV.PLMA IV.POFI IV.PSB1 IV.PTCC IV.PTMR IV.PTQR IV.RDP IV.RMP IV.ROSPO IV.SACS IV.SEI IV.SGG IV.SIRI IV.SNTG IV.SORR IV.SRES IV.SSFR IV.STAL IV.T0110 IV.TERO IV.TOLF IV.TREM IV.TRTR IV.VAGA IV.VBKN IV.VCRE IV.VISG IV.VITU IV.VIVA IV.VMGN IV.VTIR IV.VVDG IV.VVLD IV.ZCCA MN.AQU MN.BLY MN.CUC MN.PDG MN.SENA MN.TRI MN.VLC OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.FETA OE.KBA OE.LESA OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA OE.SQTA OE.WATA OE.WTTA OX.ACOM OX.AGOR OX.BAD OX.BOO OX.CAE OX.CIMO OX.CLUD OX.FUSE OX.MARN OX.MLN OX.MPRI OX.PLRO OX.PRED OX.SABO OX.VARN SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.66e+24 dyne-cm Mw = 5.55 Z = 8 km Plane Strike Dip Rake NP1 290 65 65 NP2 158 35 132 Principal Axes: Axis Value Plunge Azimuth T 2.66e+24 62 161 N 0.00e+00 23 301 P -2.66e+24 16 38 Moment Tensor: (dyne-cm) Component Value Mxx -9.76e+23 Mxy -1.37e+24 Mxz -1.62e+24 Myy -8.71e+23 Myz -8.36e+22 Mzz 1.85e+24 -------------- ##-------------------- ###-------------------- -- ###--------------------- P --- ####---------------------- ----- ####-------------------------------- ####-######--------------------------- ------###############------------------- ------###################--------------- -------#######################------------ -------##########################--------- -------############################------- --------#############################----- -------############## ##############-- --------############# T ###############- --------############ ############### --------############################ ---------######################### --------###################### ----------################## ----------############ -------------- Global CMT Convention Moment Tensor: R T P 1.85e+24 -1.62e+24 8.36e+22 -1.62e+24 -9.76e+23 1.37e+24 8.36e+22 1.37e+24 -8.71e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221109060727/index.html |
|
USGS/SLU Moment Tensor Solution ENS 2022/11/09 06:07:27:0 43.93 13.31 10.0 5.8 Marotta, IT Stations used: CH.FUORN CZ.KHC G.ECH GE.MATE GE.PSZ GE.STU GR.CLL GR.GRA1 HU.BEHE II.BFO IU.GRFO IV.MURB IV.SGRT MN.AQU MN.BLY MN.BZS MN.CUC MN.DIVS MN.DPC MN.PDG MN.TIP MN.TIR MN.TRI MN.VAE OX.CIMO OX.FUSE OX.PRED OX.SABO Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.75e+24 dyne-cm Mw = 5.56 Z = 8 km Plane Strike Dip Rake NP1 325 60 95 NP2 135 30 81 Principal Axes: Axis Value Plunge Azimuth T 2.75e+24 74 248 N 0.00e+00 4 142 P -2.75e+24 15 51 Moment Tensor: (dyne-cm) Component Value Mxx -9.77e+23 Mxy -1.19e+24 Mxz -6.89e+23 Myy -1.40e+24 Myz -1.19e+24 Mzz 2.38e+24 -------------- ---------------------- #######--------------------- ############--------------- -###############------------- P -- --#################----------- --- --####################---------------- ---######################--------------- ---#######################-------------- ----########################-------------- ----############# #########------------- -----############ T ##########------------ ------########### ###########----------- -----##########################--------- -------########################--------- -------########################------- --------######################------ ---------####################----- ---------##################--- ------------################ ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.38e+24 -6.89e+23 1.19e+24 -6.89e+23 -9.77e+23 1.19e+24 1.19e+24 1.19e+24 -1.40e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221109060727/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -60 o DIST/3.3 +100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 110 45 60 5.28 0.2531 WVFGRD96 2.0 105 45 50 5.37 0.2989 WVFGRD96 3.0 290 60 65 5.43 0.3049 WVFGRD96 4.0 290 65 65 5.47 0.3118 WVFGRD96 5.0 290 65 65 5.48 0.3222 WVFGRD96 6.0 290 65 65 5.49 0.3296 WVFGRD96 7.0 285 65 55 5.49 0.3325 WVFGRD96 8.0 290 65 65 5.55 0.3550 WVFGRD96 9.0 285 65 60 5.54 0.3485 WVFGRD96 10.0 280 70 50 5.52 0.3409 WVFGRD96 11.0 270 85 40 5.51 0.3358 WVFGRD96 12.0 85 85 -30 5.51 0.3345 WVFGRD96 13.0 80 75 -30 5.52 0.3340 WVFGRD96 14.0 80 70 -25 5.52 0.3329 WVFGRD96 15.0 80 70 -25 5.53 0.3318 WVFGRD96 16.0 80 70 -25 5.53 0.3300 WVFGRD96 17.0 80 70 -25 5.54 0.3279 WVFGRD96 18.0 80 70 -25 5.54 0.3255 WVFGRD96 19.0 80 70 -25 5.55 0.3227
The best solution is
WVFGRD96 8.0 290 65 65 5.55 0.3550
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -60 o DIST/3.3 +100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: