USGS/SLU Moment Tensor Solution ENS 2021/07/09 10:44:05:0 45.41 16.32 10.0 3.9 Croatia Stations used: HU.KOVH MN.BLY MN.TRI OE.ARSA OE.BIOA OE.CONA OE.MOA OX.CIMO OX.PRED OX.SABO SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBRS SL.GCIS SL.GORS SL.KNDS SL.LJU SL.MOZS SL.ROBS SL.SKDS SL.VISS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.33e+21 dyne-cm Mw = 3.35 Z = 9 km Plane Strike Dip Rake NP1 161 72 154 NP2 260 65 20 Principal Axes: Axis Value Plunge Azimuth T 1.33e+21 31 119 N 0.00e+00 58 309 P -1.33e+21 5 212 Moment Tensor: (dyne-cm) Component Value Mxx -7.27e+20 Mxy -1.01e+21 Mxz -1.97e+20 Myy 3.78e+20 Myz 5.72e+20 Mzz 3.49e+20 -------------- ####------------------ #######--------------------- ########---------------------- ##########------------------------ ###########------------------------- ############-------------------------- ##############------#############------- ############--#########################- #########------########################### ######----------########################## ###-------------########################## #----------------######################### -----------------############## ###### ------------------############# T ###### -----------------############# ##### -----------------################### -----------------################# -----------------############# --- -----------########### P ------------####### -------------# Global CMT Convention Moment Tensor: R T P 3.49e+20 -1.97e+20 -5.72e+20 -1.97e+20 -7.27e+20 1.01e+21 -5.72e+20 1.01e+21 3.78e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210709104405/index.html |
STK = 260 DIP = 65 RAKE = 20 MW = 3.35 HS = 9.0
The NDK file is 20210709104405.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/07/09 10:44:05:0 45.41 16.32 10.0 3.9 Croatia Stations used: HU.KOVH MN.BLY MN.TRI OE.ARSA OE.BIOA OE.CONA OE.MOA OX.CIMO OX.PRED OX.SABO SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBRS SL.GCIS SL.GORS SL.KNDS SL.LJU SL.MOZS SL.ROBS SL.SKDS SL.VISS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.33e+21 dyne-cm Mw = 3.35 Z = 9 km Plane Strike Dip Rake NP1 161 72 154 NP2 260 65 20 Principal Axes: Axis Value Plunge Azimuth T 1.33e+21 31 119 N 0.00e+00 58 309 P -1.33e+21 5 212 Moment Tensor: (dyne-cm) Component Value Mxx -7.27e+20 Mxy -1.01e+21 Mxz -1.97e+20 Myy 3.78e+20 Myz 5.72e+20 Mzz 3.49e+20 -------------- ####------------------ #######--------------------- ########---------------------- ##########------------------------ ###########------------------------- ############-------------------------- ##############------#############------- ############--#########################- #########------########################### ######----------########################## ###-------------########################## #----------------######################### -----------------############## ###### ------------------############# T ###### -----------------############# ##### -----------------################### -----------------################# -----------------############# --- -----------########### P ------------####### -------------# Global CMT Convention Moment Tensor: R T P 3.49e+20 -1.97e+20 -5.72e+20 -1.97e+20 -7.27e+20 1.01e+21 -5.72e+20 1.01e+21 3.78e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210709104405/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 75 90 0 3.03 0.4578 WVFGRD96 2.0 75 90 0 3.12 0.5471 WVFGRD96 3.0 75 90 -15 3.17 0.5667 WVFGRD96 4.0 255 80 25 3.23 0.5857 WVFGRD96 5.0 255 80 30 3.26 0.6061 WVFGRD96 6.0 255 80 25 3.27 0.6245 WVFGRD96 7.0 255 75 20 3.29 0.6392 WVFGRD96 8.0 260 65 20 3.34 0.6485 WVFGRD96 9.0 260 65 20 3.35 0.6521 WVFGRD96 10.0 260 70 25 3.36 0.6514 WVFGRD96 11.0 260 70 25 3.37 0.6474 WVFGRD96 12.0 260 70 20 3.38 0.6411 WVFGRD96 13.0 255 75 20 3.38 0.6342 WVFGRD96 14.0 255 75 20 3.39 0.6260 WVFGRD96 15.0 255 75 20 3.40 0.6168 WVFGRD96 16.0 255 75 15 3.41 0.6067 WVFGRD96 17.0 255 75 15 3.41 0.5964 WVFGRD96 18.0 255 75 15 3.42 0.5857 WVFGRD96 19.0 255 75 15 3.43 0.5746 WVFGRD96 20.0 255 75 15 3.43 0.5628 WVFGRD96 21.0 255 80 20 3.44 0.5507 WVFGRD96 22.0 255 80 20 3.45 0.5387 WVFGRD96 23.0 255 80 20 3.45 0.5265 WVFGRD96 24.0 255 75 20 3.45 0.5142 WVFGRD96 25.0 255 75 20 3.46 0.5016 WVFGRD96 26.0 255 75 20 3.46 0.4891 WVFGRD96 27.0 260 70 25 3.47 0.4767 WVFGRD96 28.0 260 70 25 3.48 0.4643 WVFGRD96 29.0 260 70 25 3.49 0.4520
The best solution is
WVFGRD96 9.0 260 65 20 3.35 0.6521
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: