USGS/SLU Moment Tensor Solution ENS 2021/01/15 12:01:36:0 45.46 16.01 10.0 4.1 Croatia Stations used: BW.BGDS BW.PART BW.RNHA BW.RNON BW.SCE BW.ZUGS CR.ZAG HU.SOP MN.BLY MN.PDG MN.TRI OE.ABTA OE.FETA OE.KBA OE.LESA OE.MOTA OE.MYKA OE.OBKA OE.RONA OE.SOKA OE.SQTA OE.WATA OX.ACOM OX.BAD OX.CAE OX.CIMO OX.CLUD OX.DRE OX.FUSE OX.MLN OX.PLRO OX.SABO OX.VARN SJ.BBLS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.32e+21 dyne-cm Mw = 3.69 Z = 12 km Plane Strike Dip Rake NP1 125 60 40 NP2 12 56 143 Principal Axes: Axis Value Plunge Azimuth T 4.32e+21 48 340 N 0.00e+00 42 156 P -4.32e+21 2 248 Moment Tensor: (dyne-cm) Component Value Mxx 1.08e+21 Mxy -2.11e+21 Mxz 2.08e+21 Myy -3.48e+21 Myz -5.58e+20 Mzz 2.40e+21 ############-- #################----- #####################------- #######################------- ############ ##########--------- -############ T ###########--------- ---########### ###########---------- -----########################----------- -----########################----------- --------######################------------ ---------#####################------------ -----------###################------------ ------------#################------------- --------------##############------------ -------------###########------------- P ----------------#######------------- --------------------##------------- ---------------------#####-------- ------------------############ ----------------############ -----------########### ----########## Global CMT Convention Moment Tensor: R T P 2.40e+21 2.08e+21 5.58e+20 2.08e+21 1.08e+21 2.11e+21 5.58e+20 2.11e+21 -3.48e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210115120136/index.html |
STK = 125 DIP = 60 RAKE = 40 MW = 3.69 HS = 12.0
The NDK file is 20210115120136.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/01/15 12:01:36:0 45.46 16.01 10.0 4.1 Croatia Stations used: BW.BGDS BW.PART BW.RNHA BW.RNON BW.SCE BW.ZUGS CR.ZAG HU.SOP MN.BLY MN.PDG MN.TRI OE.ABTA OE.FETA OE.KBA OE.LESA OE.MOTA OE.MYKA OE.OBKA OE.RONA OE.SOKA OE.SQTA OE.WATA OX.ACOM OX.BAD OX.CAE OX.CIMO OX.CLUD OX.DRE OX.FUSE OX.MLN OX.PLRO OX.SABO OX.VARN SJ.BBLS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.32e+21 dyne-cm Mw = 3.69 Z = 12 km Plane Strike Dip Rake NP1 125 60 40 NP2 12 56 143 Principal Axes: Axis Value Plunge Azimuth T 4.32e+21 48 340 N 0.00e+00 42 156 P -4.32e+21 2 248 Moment Tensor: (dyne-cm) Component Value Mxx 1.08e+21 Mxy -2.11e+21 Mxz 2.08e+21 Myy -3.48e+21 Myz -5.58e+20 Mzz 2.40e+21 ############-- #################----- #####################------- #######################------- ############ ##########--------- -############ T ###########--------- ---########### ###########---------- -----########################----------- -----########################----------- --------######################------------ ---------#####################------------ -----------###################------------ ------------#################------------- --------------##############------------ -------------###########------------- P ----------------#######------------- --------------------##------------- ---------------------#####-------- ------------------############ ----------------############ -----------########### ----########## Global CMT Convention Moment Tensor: R T P 2.40e+21 2.08e+21 5.58e+20 2.08e+21 1.08e+21 2.11e+21 5.58e+20 2.11e+21 -3.48e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210115120136/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 290 60 -25 3.33 0.3324 WVFGRD96 2.0 275 45 -50 3.48 0.4256 WVFGRD96 3.0 290 60 -25 3.48 0.4438 WVFGRD96 4.0 115 45 0 3.53 0.4731 WVFGRD96 5.0 120 50 10 3.54 0.5075 WVFGRD96 6.0 120 50 15 3.56 0.5386 WVFGRD96 7.0 120 55 20 3.58 0.5645 WVFGRD96 8.0 120 50 20 3.63 0.5796 WVFGRD96 9.0 125 55 30 3.64 0.5939 WVFGRD96 10.0 125 55 35 3.66 0.6049 WVFGRD96 11.0 125 55 35 3.67 0.6097 WVFGRD96 12.0 125 60 40 3.69 0.6117 WVFGRD96 13.0 125 60 40 3.70 0.6102 WVFGRD96 14.0 120 65 35 3.70 0.6059 WVFGRD96 15.0 120 65 35 3.71 0.6008 WVFGRD96 16.0 120 65 35 3.72 0.5940 WVFGRD96 17.0 120 65 35 3.72 0.5857 WVFGRD96 18.0 120 65 35 3.73 0.5763 WVFGRD96 19.0 120 65 35 3.74 0.5662 WVFGRD96 20.0 120 70 40 3.75 0.5562 WVFGRD96 21.0 120 70 40 3.76 0.5461 WVFGRD96 22.0 120 70 40 3.77 0.5358 WVFGRD96 23.0 120 70 40 3.78 0.5256 WVFGRD96 24.0 120 70 40 3.78 0.5152 WVFGRD96 25.0 120 70 40 3.79 0.5044 WVFGRD96 26.0 120 70 40 3.79 0.4935 WVFGRD96 27.0 120 70 40 3.80 0.4826 WVFGRD96 28.0 120 75 45 3.82 0.4724 WVFGRD96 29.0 120 75 45 3.83 0.4622
The best solution is
WVFGRD96 12.0 125 60 40 3.69 0.6117
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: