USGS/SLU Moment Tensor Solution ENS 2021/01/12 22:09:55:5 38.39 22.05 4.0 4.9 Greece Stations used: HL.ATH HL.DION HL.EVR HL.ITM HL.JAN HL.KYMI HL.LKR HL.NEO HL.NVR HL.PTL HL.RLS HL.TETR HL.VLI HL.VLS HL.VLY HT.AGG HT.AOS2 HT.EVGI HT.GRG HT.IGT HT.KPRO HT.LKD2 HT.OUR HT.PAIG HT.PSDA HT.RTZL HT.SRS HT.THAS MN.KEK MN.KLV SJ.BBLS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.24e+23 dyne-cm Mw = 4.94 Z = 11 km Plane Strike Dip Rake NP1 310 80 -35 NP2 47 56 -168 Principal Axes: Axis Value Plunge Azimuth T 3.24e+23 16 3 N 0.00e+00 54 116 P -3.24e+23 31 263 Moment Tensor: (dyne-cm) Component Value Mxx 2.94e+23 Mxy -1.41e+22 Mxz 1.04e+23 Myy -2.31e+23 Myz 1.47e+23 Mzz -6.35e+22 ###### ##### ########## T ######### ############# ############ ############################## ----############################-- --------#########################--- ------------######################---- ----------------##################------ ------------------################------ ----------------------############-------- ----- ----------------#########--------- ----- P ------------------######---------- ----- --------------------##------------ ----------------------------#----------- --------------------------#####--------- -----------------------########------- -------------------#############---- ---------------#################-- --------###################### ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -6.35e+22 1.04e+23 -1.47e+23 1.04e+23 2.94e+23 1.41e+22 -1.47e+23 1.41e+22 -2.31e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210112220955/index.html |
STK = 310 DIP = 80 RAKE = -35 MW = 4.94 HS = 11.0
The NDK file is 20210112220955.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/01/12 22:09:55:5 38.39 22.05 4.0 4.9 Greece Stations used: HL.ATH HL.DION HL.EVR HL.ITM HL.JAN HL.KYMI HL.LKR HL.NEO HL.NVR HL.PTL HL.RLS HL.TETR HL.VLI HL.VLS HL.VLY HT.AGG HT.AOS2 HT.EVGI HT.GRG HT.IGT HT.KPRO HT.LKD2 HT.OUR HT.PAIG HT.PSDA HT.RTZL HT.SRS HT.THAS MN.KEK MN.KLV SJ.BBLS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.24e+23 dyne-cm Mw = 4.94 Z = 11 km Plane Strike Dip Rake NP1 310 80 -35 NP2 47 56 -168 Principal Axes: Axis Value Plunge Azimuth T 3.24e+23 16 3 N 0.00e+00 54 116 P -3.24e+23 31 263 Moment Tensor: (dyne-cm) Component Value Mxx 2.94e+23 Mxy -1.41e+22 Mxz 1.04e+23 Myy -2.31e+23 Myz 1.47e+23 Mzz -6.35e+22 ###### ##### ########## T ######### ############# ############ ############################## ----############################-- --------#########################--- ------------######################---- ----------------##################------ ------------------################------ ----------------------############-------- ----- ----------------#########--------- ----- P ------------------######---------- ----- --------------------##------------ ----------------------------#----------- --------------------------#####--------- -----------------------########------- -------------------#############---- ---------------#################-- --------###################### ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -6.35e+22 1.04e+23 -1.47e+23 1.04e+23 2.94e+23 1.41e+22 -1.47e+23 1.41e+22 -2.31e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210112220955/index.html |
NOA - Athens result_complete.pdf |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 130 85 0 4.51 0.3013 WVFGRD96 2.0 275 50 -85 4.75 0.3902 WVFGRD96 3.0 300 60 -50 4.76 0.4015 WVFGRD96 4.0 295 70 -65 4.82 0.4413 WVFGRD96 5.0 300 70 -55 4.82 0.4892 WVFGRD96 6.0 300 70 -55 4.83 0.5224 WVFGRD96 7.0 305 75 -45 4.84 0.5430 WVFGRD96 8.0 295 65 -60 4.93 0.5864 WVFGRD96 9.0 300 65 -55 4.93 0.5914 WVFGRD96 10.0 310 80 -40 4.92 0.5952 WVFGRD96 11.0 310 80 -35 4.94 0.5974 WVFGRD96 12.0 310 80 -35 4.95 0.5971 WVFGRD96 13.0 315 90 -30 4.96 0.5937 WVFGRD96 14.0 315 90 -30 4.97 0.5894 WVFGRD96 15.0 310 75 -30 4.98 0.5842 WVFGRD96 16.0 310 80 -30 4.99 0.5778 WVFGRD96 17.0 315 85 -25 5.00 0.5704 WVFGRD96 18.0 315 85 -25 5.01 0.5623 WVFGRD96 19.0 315 85 -25 5.02 0.5529 WVFGRD96 20.0 315 85 -25 5.02 0.5428 WVFGRD96 21.0 315 85 -25 5.03 0.5319 WVFGRD96 22.0 315 85 -25 5.04 0.5209 WVFGRD96 23.0 315 85 -25 5.04 0.5095 WVFGRD96 24.0 315 85 -25 5.05 0.4978 WVFGRD96 25.0 315 85 -25 5.06 0.4860 WVFGRD96 26.0 315 85 -25 5.06 0.4741 WVFGRD96 27.0 315 85 -25 5.07 0.4623 WVFGRD96 28.0 315 85 -25 5.07 0.4505 WVFGRD96 29.0 315 85 -25 5.08 0.4392
The best solution is
WVFGRD96 11.0 310 80 -35 4.94 0.5974
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: