USGS/SLU Moment Tensor Solution ENS 2021/01/04 06:49:53:6 45.42 16.23 5.0 4.5 Croatia Stations used: AC.KBN BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB BW.GRMB BW.KW1 BW.MANZ BW.MGBB BW.MGS01 BW.MGS02 BW.MGS03 BW.MGS05 BW.PART BW.RJOB BW.RMOA BW.RNHA BW.RNON BW.ROTZ BW.RTBE BW.SCE BW.TON BW.ZUGS CH.ACB CH.BALST CH.BERGE CH.BERNI CH.BNALP CH.DAGMA CH.DAVOX CH.DIX CH.EMING CH.EMMET CH.FUORN CH.FUSIO CH.GRIMS CH.HAUIG CH.LKBD2 CH.LLS CH.METMA CH.MMK CH.MUGIO CH.MUO CH.MUTEZ CH.PANIX CH.PLONS CH.ROMAN CH.SGT05 CH.SLE CH.SULZ CH.VDL CH.VDR CH.WALHA CH.WGT CH.ZUR CR.ZAG GE.MATE GE.STU GR.BFO GR.BRG GR.CLL GR.FUR GR.GEC2 GR.GEC7 GR.GRA1 GR.GRA2 GR.GRA4 GR.GRB1 GR.GRB3 GR.GRB4 GR.GRC1 GR.GRC2 GR.GRC3 GR.GRC4 GR.MOX GR.UBR GR.WET HT.NEST HU.AMBH HU.BUD HU.KOVH HU.MORH HU.MPLH HU.SOP MN.BLY MN.DPC MN.PDG MN.TUE OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.DAVA OE.FETA OE.KBA OE.LESA OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA OE.SQTA OE.VIE OE.WATA OX.ACOM OX.AGOR OX.BAD OX.BALD OX.CAE OX.CIMO OX.CLUD OX.DRE OX.MARN OX.MLN OX.MPRI OX.SABO SJ.BBLS SJ.FRGS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS SX.TANN Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 10 km Plane Strike Dip Rake NP1 265 50 60 NP2 127 48 121 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 67 108 N 0.00e+00 23 285 P -2.19e+22 1 16 Moment Tensor: (dyne-cm) Component Value Mxx -2.00e+22 Mxy -6.63e+21 Mxz -2.66e+21 Myy 1.31e+21 Myz 7.29e+21 Mzz 1.87e+22 ----------- P --------------- ---- ---------------------------- ------------------------------ ---------------------------------- #----------------------------------- ##--------#####################------- ####---#############################---- ####-#################################-- ####--###################################- ##-----################## ############## #-------################# T ############## ---------################ ############## ----------############################## ------------############################ -------------######################### ---------------##################### -----------------################# -----------------------###---- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.87e+22 -2.66e+21 -7.29e+21 -2.66e+21 -2.00e+22 6.63e+21 -7.29e+21 6.63e+21 1.31e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210104064953/index.html |
STK = 265 DIP = 50 RAKE = 60 MW = 4.16 HS = 10.0
The NDK file is 20210104064953.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/01/04 06:49:53:6 45.42 16.23 5.0 4.5 Croatia Stations used: AC.KBN BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB BW.GRMB BW.KW1 BW.MANZ BW.MGBB BW.MGS01 BW.MGS02 BW.MGS03 BW.MGS05 BW.PART BW.RJOB BW.RMOA BW.RNHA BW.RNON BW.ROTZ BW.RTBE BW.SCE BW.TON BW.ZUGS CH.ACB CH.BALST CH.BERGE CH.BERNI CH.BNALP CH.DAGMA CH.DAVOX CH.DIX CH.EMING CH.EMMET CH.FUORN CH.FUSIO CH.GRIMS CH.HAUIG CH.LKBD2 CH.LLS CH.METMA CH.MMK CH.MUGIO CH.MUO CH.MUTEZ CH.PANIX CH.PLONS CH.ROMAN CH.SGT05 CH.SLE CH.SULZ CH.VDL CH.VDR CH.WALHA CH.WGT CH.ZUR CR.ZAG GE.MATE GE.STU GR.BFO GR.BRG GR.CLL GR.FUR GR.GEC2 GR.GEC7 GR.GRA1 GR.GRA2 GR.GRA4 GR.GRB1 GR.GRB3 GR.GRB4 GR.GRC1 GR.GRC2 GR.GRC3 GR.GRC4 GR.MOX GR.UBR GR.WET HT.NEST HU.AMBH HU.BUD HU.KOVH HU.MORH HU.MPLH HU.SOP MN.BLY MN.DPC MN.PDG MN.TUE OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.DAVA OE.FETA OE.KBA OE.LESA OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA OE.SQTA OE.VIE OE.WATA OX.ACOM OX.AGOR OX.BAD OX.BALD OX.CAE OX.CIMO OX.CLUD OX.DRE OX.MARN OX.MLN OX.MPRI OX.SABO SJ.BBLS SJ.FRGS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS SX.TANN Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 10 km Plane Strike Dip Rake NP1 265 50 60 NP2 127 48 121 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 67 108 N 0.00e+00 23 285 P -2.19e+22 1 16 Moment Tensor: (dyne-cm) Component Value Mxx -2.00e+22 Mxy -6.63e+21 Mxz -2.66e+21 Myy 1.31e+21 Myz 7.29e+21 Mzz 1.87e+22 ----------- P --------------- ---- ---------------------------- ------------------------------ ---------------------------------- #----------------------------------- ##--------#####################------- ####---#############################---- ####-#################################-- ####--###################################- ##-----################## ############## #-------################# T ############## ---------################ ############## ----------############################## ------------############################ -------------######################### ---------------##################### -----------------################# -----------------------###---- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.87e+22 -2.66e+21 -7.29e+21 -2.66e+21 -2.00e+22 6.63e+21 -7.29e+21 6.63e+21 1.31e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210104064953/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 245 90 -10 3.75 0.3471 WVFGRD96 2.0 245 90 -10 3.84 0.4235 WVFGRD96 3.0 245 90 -35 3.93 0.4516 WVFGRD96 4.0 250 75 45 4.00 0.4943 WVFGRD96 5.0 250 70 40 4.01 0.5362 WVFGRD96 6.0 255 65 45 4.04 0.5684 WVFGRD96 7.0 255 60 45 4.05 0.5902 WVFGRD96 8.0 265 55 60 4.14 0.6225 WVFGRD96 9.0 270 50 65 4.17 0.6375 WVFGRD96 10.0 265 50 60 4.16 0.6433 WVFGRD96 11.0 265 50 60 4.16 0.6398 WVFGRD96 12.0 260 50 55 4.16 0.6303 WVFGRD96 13.0 255 55 45 4.14 0.6189 WVFGRD96 14.0 250 60 35 4.13 0.6082 WVFGRD96 15.0 245 65 30 4.13 0.5978 WVFGRD96 16.0 245 65 30 4.13 0.5881 WVFGRD96 17.0 245 70 25 4.14 0.5780 WVFGRD96 18.0 245 70 25 4.15 0.5677 WVFGRD96 19.0 245 70 25 4.15 0.5568 WVFGRD96 20.0 245 70 25 4.16 0.5456 WVFGRD96 21.0 245 70 25 4.16 0.5365 WVFGRD96 22.0 245 85 25 4.17 0.5251 WVFGRD96 23.0 240 80 -20 4.18 0.5152 WVFGRD96 24.0 240 80 -20 4.19 0.5086 WVFGRD96 25.0 240 80 -20 4.19 0.5018 WVFGRD96 26.0 240 75 -20 4.20 0.4947 WVFGRD96 27.0 240 80 -20 4.20 0.4873 WVFGRD96 28.0 240 80 -20 4.21 0.4796 WVFGRD96 29.0 240 80 -20 4.21 0.4722
The best solution is
WVFGRD96 10.0 265 50 60 4.16 0.6433
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: