USGS/SLU Moment Tensor Solution ENS 2020/12/29 11:19:54:0 45.41 16.30 10.0 6.4 Croatia Stations used: AC.BCI BS.BLKB BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB BW.GRMB BW.KW1 BW.MANZ BW.MGBB BW.MGS02 BW.MGS03 BW.MGS05 BW.PART BW.RMOA BW.RNON BW.ROTZ BW.SCE BW.TON BW.WETR BW.ZUGS CH.BERNI CH.BNALP CH.DAVOX CH.EMING CH.FIESA CH.FUORN CH.FUSIO CH.GRIMS CH.LIENZ CH.LLS CH.MUGIO CH.MUO CH.PANIX CH.PLONS CH.ROMAN CH.SGT05 CH.SGT18 CH.TRULL CH.VDL CH.VDR CH.WGT CH.WILA CH.ZUR GE.MATE GR.BRG GR.FUR GR.GEC2 GR.GEC7 GR.GRA4 GR.GRC1 GR.GRC3 GR.GRC4 GR.WET HU.AMBH HU.BEHE HU.BSZH HU.BUD HU.CSKK HU.KOVH HU.MORH HU.MPLH HU.SOP HU.TIH MN.BLY MN.PDG MN.TRI MN.TUE OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.FETA OE.KBA OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA OE.VIE OE.WATA OX.ACOM OX.BAD OX.BALD OX.BOO OX.CAE OX.CIMO OX.CLUD OX.DRE OX.FUSE OX.MARN OX.MLN OX.MPRI OX.PRED OX.SABO OX.VARN PL.NIE PL.OJC RO.MDVR RO.PUNG SJ.BBLS SJ.FRGS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS SX.TANN SX.TRIB SX.WERD SX.WERN TH.PLN Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.67e+25 dyne-cm Mw = 6.31 Z = 12 km Plane Strike Dip Rake NP1 312 80 165 NP2 45 75 10 Principal Axes: Axis Value Plunge Azimuth T 3.67e+25 18 268 N 0.00e+00 72 101 P -3.67e+25 4 359 Moment Tensor: (dyne-cm) Component Value Mxx -3.65e+25 Mxy 1.59e+24 Mxz -2.71e+24 Myy 3.33e+25 Myz -1.05e+25 Mzz 3.19e+24 ----- P ------ --------- ---------- ---------------------------- -----------------------------# #####--------------------------### #########----------------------##### #############------------------####### ################--------------########## ##################-----------########### ######################-------############# ## ###################---############### ## T ####################-################ ## ###################---############### #####################-------############ ###################-----------########## ###############---------------######## ############-------------------##### ########-----------------------### ###--------------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.19e+24 -2.71e+24 1.05e+25 -2.71e+24 -3.65e+25 -1.59e+24 1.05e+25 -1.59e+24 3.33e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201229111954/index.html |
STK = 45 DIP = 75 RAKE = 10 MW = 6.31 HS = 12.0
The NDK file is 20201229111954.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2020/12/29 11:19:54:0 45.41 16.30 10.0 6.4 Croatia Stations used: AC.BCI BS.BLKB BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB BW.GRMB BW.KW1 BW.MANZ BW.MGBB BW.MGS02 BW.MGS03 BW.MGS05 BW.PART BW.RMOA BW.RNON BW.ROTZ BW.SCE BW.TON BW.WETR BW.ZUGS CH.BERNI CH.BNALP CH.DAVOX CH.EMING CH.FIESA CH.FUORN CH.FUSIO CH.GRIMS CH.LIENZ CH.LLS CH.MUGIO CH.MUO CH.PANIX CH.PLONS CH.ROMAN CH.SGT05 CH.SGT18 CH.TRULL CH.VDL CH.VDR CH.WGT CH.WILA CH.ZUR GE.MATE GR.BRG GR.FUR GR.GEC2 GR.GEC7 GR.GRA4 GR.GRC1 GR.GRC3 GR.GRC4 GR.WET HU.AMBH HU.BEHE HU.BSZH HU.BUD HU.CSKK HU.KOVH HU.MORH HU.MPLH HU.SOP HU.TIH MN.BLY MN.PDG MN.TRI MN.TUE OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.FETA OE.KBA OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA OE.VIE OE.WATA OX.ACOM OX.BAD OX.BALD OX.BOO OX.CAE OX.CIMO OX.CLUD OX.DRE OX.FUSE OX.MARN OX.MLN OX.MPRI OX.PRED OX.SABO OX.VARN PL.NIE PL.OJC RO.MDVR RO.PUNG SJ.BBLS SJ.FRGS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS SX.TANN SX.TRIB SX.WERD SX.WERN TH.PLN Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.67e+25 dyne-cm Mw = 6.31 Z = 12 km Plane Strike Dip Rake NP1 312 80 165 NP2 45 75 10 Principal Axes: Axis Value Plunge Azimuth T 3.67e+25 18 268 N 0.00e+00 72 101 P -3.67e+25 4 359 Moment Tensor: (dyne-cm) Component Value Mxx -3.65e+25 Mxy 1.59e+24 Mxz -2.71e+24 Myy 3.33e+25 Myz -1.05e+25 Mzz 3.19e+24 ----- P ------ --------- ---------- ---------------------------- -----------------------------# #####--------------------------### #########----------------------##### #############------------------####### ################--------------########## ##################-----------########### ######################-------############# ## ###################---############### ## T ####################-################ ## ###################---############### #####################-------############ ###################-----------########## ###############---------------######## ############-------------------##### ########-----------------------### ###--------------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.19e+24 -2.71e+24 1.05e+25 -2.71e+24 -3.65e+25 -1.59e+24 1.05e+25 -1.59e+24 3.33e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201229111954/index.html |
W-phase Moment Tensor (Mww) Moment 4.411e+18 N-m Magnitude 6.36 Mww Depth 13.5 km Percent DC 97% Half Duration 3.93 s Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 224 89 14 NP2 134 76 179 Principal Axes Axis Value Plunge Azimuth T 4.444e+18 N-m 11 90 N -0.067e+18 N-m 76 228 P -4.377e+18 N-m 9 358 |
F-E Region NW Balkan Region Mw Beach Ball Time 2020-12-29 11:19:55.6 UTC Magnitude 6.4 (Mw) Epicenter 16.21E 45.48N Depth 10 km Status M - manually revised |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 220 90 0 5.97 0.4634 WVFGRD96 2.0 40 85 -5 6.07 0.5974 WVFGRD96 3.0 40 90 0 6.11 0.6527 WVFGRD96 4.0 40 90 5 6.14 0.6888 WVFGRD96 5.0 40 85 5 6.17 0.7146 WVFGRD96 6.0 220 90 -10 6.19 0.7353 WVFGRD96 7.0 40 85 10 6.22 0.7571 WVFGRD96 8.0 45 75 10 6.26 0.7786 WVFGRD96 9.0 45 75 10 6.27 0.7862 WVFGRD96 10.0 45 70 10 6.29 0.7912 WVFGRD96 11.0 45 70 10 6.31 0.7942 WVFGRD96 12.0 45 75 10 6.31 0.7949 WVFGRD96 13.0 45 75 10 6.33 0.7936 WVFGRD96 14.0 45 75 10 6.34 0.7904 WVFGRD96 15.0 45 75 10 6.35 0.7859 WVFGRD96 16.0 45 75 10 6.35 0.7797 WVFGRD96 17.0 45 75 10 6.36 0.7722 WVFGRD96 18.0 45 75 10 6.37 0.7634 WVFGRD96 19.0 45 75 10 6.38 0.7535 WVFGRD96 20.0 40 80 10 6.38 0.7429 WVFGRD96 21.0 40 80 10 6.38 0.7315 WVFGRD96 22.0 40 80 10 6.39 0.7192 WVFGRD96 23.0 40 80 10 6.40 0.7062 WVFGRD96 24.0 40 80 10 6.40 0.6928 WVFGRD96 25.0 40 80 10 6.41 0.6791 WVFGRD96 26.0 40 80 10 6.41 0.6649 WVFGRD96 27.0 40 80 -10 6.42 0.6506 WVFGRD96 28.0 40 80 -10 6.43 0.6368 WVFGRD96 29.0 40 80 -10 6.43 0.6227
The best solution is
WVFGRD96 12.0 45 75 10 6.31 0.7949
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: