USGS/SLU Moment Tensor Solution ENS 2020/10/30 11:51:27:0 37.92 26.79 21.0 7.0 Greece Stations used: GE.CSS HL.ATH HL.EVR HL.GVD HL.IACM HL.ITM HL.KARP HL.KLV HL.KSL HL.KTHA HL.KZN HL.NEO HL.NVR HL.SIVA HL.SKY HL.SMTH HL.TETR HL.VAM HL.VLY HT.AGG HT.ALN HT.AOS2 HT.EVGI HT.GRG HT.KAVA HT.KNT HT.KPRO HT.NEST HT.OUR HT.PAIG HT.RTZL HT.SOH HT.SRS HT.THAS HT.THE HT.TYRN HT.XOR KO.AFSR KO.ARMT KO.BALB KO.BGKT KO.CTYL KO.EDC KO.GEML KO.HDMB KO.ISK KO.KAMT KO.KAVV KO.KCTX KO.KIZT KO.KONT KO.KULU KO.KURC KO.LADK KO.LFK KO.LOD KO.RKY KO.RUZG KO.SAUV KO.SDAG KO.SHUT KO.SILT KO.SVRH KO.YALI KO.YLV MN.ISP MN.KEK MN.THL Filtering commands used: cut o DIST/3.3 -80 o DIST/3.3 +150 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.02 n 3 Best Fitting Double Couple Mo = 2.37e+26 dyne-cm Mw = 6.85 Z = 8 km Plane Strike Dip Rake NP1 268 45 -95 NP2 95 45 -85 Principal Axes: Axis Value Plunge Azimuth T 2.37e+26 0 1 N 0.00e+00 4 271 P -2.37e+26 86 93 Moment Tensor: (dyne-cm) Component Value Mxx 2.37e+26 Mxy 6.12e+24 Mxz 1.27e+24 Myy -7.43e+23 Myz -1.46e+25 Mzz -2.36e+26 ###### T ##### ########## ######### ############################ ############################## ################################## ###########---------------########## #######-------------------------###### #####-------------------------------#### ###-----------------------------------## ##--------------------------------------## ----------------------- ---------------- ##--------------------- P ---------------- ###-------------------- ---------------# ####-----------------------------------# ######------------------------------#### ########-------------------------##### ############---------------######### ################################## ############################## ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -2.36e+26 1.27e+24 1.46e+25 1.27e+24 2.37e+26 -6.12e+24 1.46e+25 -6.12e+24 -7.43e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201030115127/index.html |
STK = 95 DIP = 45 RAKE = -85 MW = 6.85 HS = 8.0
The NDK file is 20201030115127.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2020/10/30 11:51:27:0 37.92 26.79 21.0 7.0 Greece Stations used: GE.CSS HL.ATH HL.EVR HL.GVD HL.IACM HL.ITM HL.KARP HL.KLV HL.KSL HL.KTHA HL.KZN HL.NEO HL.NVR HL.SIVA HL.SKY HL.SMTH HL.TETR HL.VAM HL.VLY HT.AGG HT.ALN HT.AOS2 HT.EVGI HT.GRG HT.KAVA HT.KNT HT.KPRO HT.NEST HT.OUR HT.PAIG HT.RTZL HT.SOH HT.SRS HT.THAS HT.THE HT.TYRN HT.XOR KO.AFSR KO.ARMT KO.BALB KO.BGKT KO.CTYL KO.EDC KO.GEML KO.HDMB KO.ISK KO.KAMT KO.KAVV KO.KCTX KO.KIZT KO.KONT KO.KULU KO.KURC KO.LADK KO.LFK KO.LOD KO.RKY KO.RUZG KO.SAUV KO.SDAG KO.SHUT KO.SILT KO.SVRH KO.YALI KO.YLV MN.ISP MN.KEK MN.THL Filtering commands used: cut o DIST/3.3 -80 o DIST/3.3 +150 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.02 n 3 Best Fitting Double Couple Mo = 2.37e+26 dyne-cm Mw = 6.85 Z = 8 km Plane Strike Dip Rake NP1 268 45 -95 NP2 95 45 -85 Principal Axes: Axis Value Plunge Azimuth T 2.37e+26 0 1 N 0.00e+00 4 271 P -2.37e+26 86 93 Moment Tensor: (dyne-cm) Component Value Mxx 2.37e+26 Mxy 6.12e+24 Mxz 1.27e+24 Myy -7.43e+23 Myz -1.46e+25 Mzz -2.36e+26 ###### T ##### ########## ######### ############################ ############################## ################################## ###########---------------########## #######-------------------------###### #####-------------------------------#### ###-----------------------------------## ##--------------------------------------## ----------------------- ---------------- ##--------------------- P ---------------- ###-------------------- ---------------# ####-----------------------------------# ######------------------------------#### ########-------------------------##### ############---------------######### ################################## ############################## ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -2.36e+26 1.27e+24 1.46e+25 1.27e+24 2.37e+26 -6.12e+24 1.46e+25 -6.12e+24 -7.43e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201030115127/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -80 o DIST/3.3 +150 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.02 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 285 50 -65 6.65 0.4424 WVFGRD96 2.0 110 50 -60 6.69 0.4903 WVFGRD96 3.0 105 50 -70 6.73 0.5395 WVFGRD96 4.0 95 45 -85 6.76 0.5799 WVFGRD96 5.0 95 45 -85 6.79 0.6090 WVFGRD96 6.0 95 45 -85 6.82 0.6243 WVFGRD96 7.0 95 45 -85 6.83 0.6266 WVFGRD96 8.0 95 45 -85 6.85 0.6519 WVFGRD96 9.0 95 45 -85 6.86 0.6407 WVFGRD96 10.0 95 45 -85 6.86 0.6169 WVFGRD96 11.0 95 45 -85 6.86 0.5842 WVFGRD96 12.0 95 45 -85 6.86 0.5442 WVFGRD96 13.0 270 45 -95 6.85 0.4999 WVFGRD96 14.0 95 45 -85 6.84 0.4580 WVFGRD96 15.0 105 45 -70 6.81 0.4190 WVFGRD96 16.0 135 65 -20 6.74 0.4070 WVFGRD96 17.0 135 70 -20 6.73 0.4012 WVFGRD96 18.0 135 70 -20 6.73 0.3962 WVFGRD96 19.0 140 70 5 6.73 0.3930 WVFGRD96 20.0 140 70 5 6.74 0.3917 WVFGRD96 21.0 140 70 10 6.74 0.3896 WVFGRD96 22.0 140 70 10 6.75 0.3892 WVFGRD96 23.0 140 70 15 6.75 0.3897 WVFGRD96 24.0 140 70 15 6.76 0.3909 WVFGRD96 25.0 140 70 15 6.76 0.3924 WVFGRD96 26.0 140 70 15 6.77 0.3938 WVFGRD96 27.0 140 70 15 6.77 0.3955 WVFGRD96 28.0 140 70 15 6.78 0.3974 WVFGRD96 29.0 140 70 20 6.78 0.3999
The best solution is
WVFGRD96 8.0 95 45 -85 6.85 0.6519
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -80 o DIST/3.3 +150 rtr taper w 0.1 hp c 0.01 n 3 lp c 0.02 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: