USGS/SLU Moment Tensor Solution ENS 2019/11/26 09:19:26:0 43.20 17.96 10.0 5.4 Bosnia-Herzegovina Stations used: AC.KBN HL.RDO HT.KAVA HT.KNT HT.OUR HT.SOH HT.SRS HT.THE HU.BEHE HU.KOVH HU.MORH HU.TIH IV.PTCC MN.BZS MN.PDG MN.TRI OX.ACOM OX.BAD OX.DRE OX.SABO SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 7.41e+23 dyne-cm Mw = 5.18 Z = 21 km Plane Strike Dip Rake NP1 157 66 141 NP2 265 55 30 Principal Axes: Axis Value Plunge Azimuth T 7.41e+23 44 117 N 0.00e+00 45 310 P -7.41e+23 7 213 Moment Tensor: (dyne-cm) Component Value Mxx -4.37e+23 Mxy -4.88e+23 Mxz -9.42e+22 Myy 8.87e+22 Myz 3.78e+23 Mzz 3.48e+23 -------------- ##-------------------- #####----------------------- ######------------------------ ########-------------------------- #########--------------------------- ##########-----#############---------- ##########--######################------ ######------##########################-- ####---------############################- ##------------############################ #--------------########################### ----------------############## ######### ---------------############## T ######## ----------------############# ######## ----------------###################### -----------------################### -----------------################# -- ------------############# - P -------------########### ----------------##### -------------- Global CMT Convention Moment Tensor: R T P 3.48e+23 -9.42e+22 -3.78e+23 -9.42e+22 -4.37e+23 4.88e+23 -3.78e+23 4.88e+23 8.87e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191126091926/index.html |
STK = 265 DIP = 55 RAKE = 30 MW = 5.18 HS = 21.0
The NDK file is 20191126091926.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/11/26 09:19:26:0 43.20 17.96 10.0 5.4 Bosnia-Herzegovina Stations used: AC.KBN HL.RDO HT.KAVA HT.KNT HT.OUR HT.SOH HT.SRS HT.THE HU.BEHE HU.KOVH HU.MORH HU.TIH IV.PTCC MN.BZS MN.PDG MN.TRI OX.ACOM OX.BAD OX.DRE OX.SABO SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 7.41e+23 dyne-cm Mw = 5.18 Z = 21 km Plane Strike Dip Rake NP1 157 66 141 NP2 265 55 30 Principal Axes: Axis Value Plunge Azimuth T 7.41e+23 44 117 N 0.00e+00 45 310 P -7.41e+23 7 213 Moment Tensor: (dyne-cm) Component Value Mxx -4.37e+23 Mxy -4.88e+23 Mxz -9.42e+22 Myy 8.87e+22 Myz 3.78e+23 Mzz 3.48e+23 -------------- ##-------------------- #####----------------------- ######------------------------ ########-------------------------- #########--------------------------- ##########-----#############---------- ##########--######################------ ######------##########################-- ####---------############################- ##------------############################ #--------------########################### ----------------############## ######### ---------------############## T ######## ----------------############# ######## ----------------###################### -----------------################### -----------------################# -- ------------############# - P -------------########### ----------------##### -------------- Global CMT Convention Moment Tensor: R T P 3.48e+23 -9.42e+22 -3.78e+23 -9.42e+22 -4.37e+23 4.88e+23 -3.78e+23 4.88e+23 8.87e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191126091926/index.html |
Summary at EMSC-CSEM |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 60 -35 4.64 0.2515 WVFGRD96 2.0 125 45 -85 4.84 0.3497 WVFGRD96 3.0 335 50 -45 4.87 0.3651 WVFGRD96 4.0 355 80 0 4.86 0.3635 WVFGRD96 5.0 355 80 0 4.88 0.3492 WVFGRD96 6.0 165 90 35 4.85 0.3549 WVFGRD96 7.0 165 90 35 4.88 0.3826 WVFGRD96 8.0 345 90 -40 4.94 0.4074 WVFGRD96 9.0 345 90 -35 4.97 0.4304 WVFGRD96 10.0 345 90 -35 4.99 0.4496 WVFGRD96 11.0 345 90 -35 5.01 0.4655 WVFGRD96 12.0 345 90 -35 5.03 0.4774 WVFGRD96 13.0 340 80 -40 5.04 0.4854 WVFGRD96 14.0 340 80 -35 5.07 0.4902 WVFGRD96 15.0 340 80 -35 5.08 0.4907 WVFGRD96 16.0 260 55 20 5.09 0.5023 WVFGRD96 17.0 265 55 30 5.11 0.5129 WVFGRD96 18.0 265 55 30 5.13 0.5216 WVFGRD96 19.0 265 55 30 5.15 0.5282 WVFGRD96 20.0 265 55 30 5.16 0.5312 WVFGRD96 21.0 265 55 30 5.18 0.5333 WVFGRD96 22.0 265 55 30 5.19 0.5320 WVFGRD96 23.0 265 55 30 5.20 0.5266 WVFGRD96 24.0 265 55 30 5.21 0.5205 WVFGRD96 25.0 265 55 30 5.21 0.5105 WVFGRD96 26.0 265 60 30 5.22 0.5017 WVFGRD96 27.0 265 60 30 5.23 0.4900 WVFGRD96 28.0 265 60 30 5.24 0.4784 WVFGRD96 29.0 70 40 20 5.23 0.4662
The best solution is
WVFGRD96 21.0 265 55 30 5.18 0.5333
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: