USGS/SLU Moment Tensor Solution ENS 2019/11/26 02:54:11:0 41.45 19.44 10.0 6.4 Albania Stations used: AC.KBN BS.ELND BS.LOZB BS.PLVB BS.RAZG CL.PSAM CL.TRIZ HA.ATAL HA.AXAR HA.LOUT HA.MAGU HA.MAKR HA.STFN HL.ATH HL.DION HL.EVR HL.KZN HL.LIA HL.LKR HL.NEO HL.PENT HL.PRK HL.PTL HL.RDO HL.SKY HL.SMTH HL.VLY HP.AMPL HP.GUR HP.PRMD HT.HORT HT.IGT HT.KAVA HT.KNT HT.LIT HT.NEST HT.OUR HT.SIGR HT.SOH HT.SRS HT.THE HT.TYRN HU.BEHE HU.BUD HU.KOVH HU.MORH KO.ERIK KO.GADA KO.LAP MN.BZS MN.PDG MN.TRI RO.BAIL RO.BZS RO.COPA RO.DEV RO.DRGR RO.GZR RO.HERR RO.HUMR RO.LOT RO.MDVR RO.PUNG RO.SIRR RO.VLAD SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.09e+25 dyne-cm Mw = 6.26 Z = 31 km Plane Strike Dip Rake NP1 136 77 98 NP2 285 15 60 Principal Axes: Axis Value Plunge Azimuth T 3.09e+25 57 56 N 0.00e+00 7 314 P -3.09e+25 32 220 Moment Tensor: (dyne-cm) Component Value Mxx -1.05e+25 Mxy -6.81e+24 Mxz 1.85e+25 Myy -2.90e+24 Myz 2.04e+25 Mzz 1.34e+25 -------------- ------########-------- ----###################----- #-#########################--- #---###########################--- #-----############################-- --------############################-- ----------############### ##########-- ------------############# T ###########- --------------############ ###########-- ----------------#########################- -----------------########################- -------------------######################- --------------------#################### ----------------------################## --------- -----------############### -------- P -------------############ ------- ----------------######## ---------------------------### ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.34e+25 1.85e+25 -2.04e+25 1.85e+25 -1.05e+25 6.81e+24 -2.04e+25 6.81e+24 -2.90e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191126025411/index.html |
STK = 285 DIP = 15 RAKE = 60 MW = 6.26 HS = 31.0
The NDK file is 20191126025411.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/11/26 02:54:11:0 41.45 19.44 10.0 6.4 Albania Stations used: AC.KBN BS.ELND BS.LOZB BS.PLVB BS.RAZG CL.PSAM CL.TRIZ HA.ATAL HA.AXAR HA.LOUT HA.MAGU HA.MAKR HA.STFN HL.ATH HL.DION HL.EVR HL.KZN HL.LIA HL.LKR HL.NEO HL.PENT HL.PRK HL.PTL HL.RDO HL.SKY HL.SMTH HL.VLY HP.AMPL HP.GUR HP.PRMD HT.HORT HT.IGT HT.KAVA HT.KNT HT.LIT HT.NEST HT.OUR HT.SIGR HT.SOH HT.SRS HT.THE HT.TYRN HU.BEHE HU.BUD HU.KOVH HU.MORH KO.ERIK KO.GADA KO.LAP MN.BZS MN.PDG MN.TRI RO.BAIL RO.BZS RO.COPA RO.DEV RO.DRGR RO.GZR RO.HERR RO.HUMR RO.LOT RO.MDVR RO.PUNG RO.SIRR RO.VLAD SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.09e+25 dyne-cm Mw = 6.26 Z = 31 km Plane Strike Dip Rake NP1 136 77 98 NP2 285 15 60 Principal Axes: Axis Value Plunge Azimuth T 3.09e+25 57 56 N 0.00e+00 7 314 P -3.09e+25 32 220 Moment Tensor: (dyne-cm) Component Value Mxx -1.05e+25 Mxy -6.81e+24 Mxz 1.85e+25 Myy -2.90e+24 Myz 2.04e+25 Mzz 1.34e+25 -------------- ------########-------- ----###################----- #-#########################--- #---###########################--- #-----############################-- --------############################-- ----------############### ##########-- ------------############# T ###########- --------------############ ###########-- ----------------#########################- -----------------########################- -------------------######################- --------------------#################### ----------------------################## --------- -----------############### -------- P -------------############ ------- ----------------######## ---------------------------### ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.34e+25 1.85e+25 -2.04e+25 1.85e+25 -1.05e+25 6.81e+24 -2.04e+25 6.81e+24 -2.90e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191126025411/index.html |
W-phase Moment Tensor (Mww) Moment 4.561e+18 N-m Magnitude 6.37 Mww Depth 19.5 km Percent DC 78% Half Duration 3.89 s Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 338Â 27Â 92Â NP2 156Â 63Â 89Â Principal Axes Axis Value Plunge Azimuth T 4.269e+18 N-m 72Â 64Â N 0.538e+18 N-m 1Â 156Â P -4.806e+18 N-m 18Â 247Â |
EMSC-CSEM Solutions |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 140 45 -90 5.81 0.2446 WVFGRD96 2.0 140 45 -90 5.90 0.3039 WVFGRD96 3.0 320 45 -90 5.93 0.2813 WVFGRD96 4.0 55 45 75 5.89 0.2477 WVFGRD96 5.0 35 50 50 5.87 0.2368 WVFGRD96 6.0 190 35 -5 5.88 0.2527 WVFGRD96 7.0 190 35 -5 5.89 0.2738 WVFGRD96 8.0 175 20 -40 6.01 0.2962 WVFGRD96 9.0 165 15 -60 6.05 0.3306 WVFGRD96 10.0 275 15 50 6.06 0.3640 WVFGRD96 11.0 275 15 50 6.08 0.3956 WVFGRD96 12.0 285 15 60 6.09 0.4237 WVFGRD96 13.0 275 15 50 6.10 0.4485 WVFGRD96 14.0 285 15 60 6.11 0.4719 WVFGRD96 15.0 285 15 60 6.12 0.4921 WVFGRD96 16.0 290 15 65 6.13 0.5102 WVFGRD96 17.0 290 15 65 6.14 0.5268 WVFGRD96 18.0 285 15 60 6.15 0.5417 WVFGRD96 19.0 285 15 60 6.16 0.5551 WVFGRD96 20.0 275 20 50 6.17 0.5672 WVFGRD96 21.0 285 15 60 6.19 0.5783 WVFGRD96 22.0 285 15 60 6.19 0.5880 WVFGRD96 23.0 285 15 60 6.20 0.5965 WVFGRD96 24.0 285 15 60 6.21 0.6039 WVFGRD96 25.0 285 15 60 6.22 0.6104 WVFGRD96 26.0 285 15 60 6.23 0.6160 WVFGRD96 27.0 285 15 60 6.24 0.6206 WVFGRD96 28.0 285 15 60 6.24 0.6241 WVFGRD96 29.0 285 15 60 6.25 0.6266 WVFGRD96 30.0 285 15 60 6.26 0.6280 WVFGRD96 31.0 285 15 60 6.26 0.6283 WVFGRD96 32.0 290 15 65 6.27 0.6276 WVFGRD96 33.0 290 15 65 6.28 0.6259 WVFGRD96 34.0 280 20 55 6.28 0.6233 WVFGRD96 35.0 285 20 60 6.29 0.6199 WVFGRD96 36.0 285 20 60 6.29 0.6156 WVFGRD96 37.0 285 20 60 6.29 0.6104 WVFGRD96 38.0 290 20 65 6.30 0.6046 WVFGRD96 39.0 295 20 70 6.30 0.5985
The best solution is
WVFGRD96 31.0 285 15 60 6.26 0.6283
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: