USGS/SLU Moment Tensor Solution ENS 2019/11/11 10:52:45:0 44.54 4.63 10.0 4.9 France Stations used: FR.ARBF FR.ARTF FR.ATE FR.BSTF FR.CALF FR.CARF FR.CFF FR.CHMF FR.EILF FR.ESCA FR.FILF FR.FNEB FR.HOHE FR.ILLF FR.ISO FR.LABF FR.LRVF FR.MLS FR.MLYF FR.MONQ FR.PAND FR.PYLO FR.RUSF FR.SALF FR.SAOF FR.SPIF FR.TURF FR.URDF FR.VIEF FR.WLS FR.ZELS GE.STU GE.WLF GU.BHB GU.ENR GU.GBOS GU.GORR GU.PCP GU.POPM GU.PZZ GU.RORO GU.RRL GU.RSP GU.SATI GU.STV IV.BDI IV.IMI IV.MONC IV.MSSA IV.PLMA IV.QLNO MN.BNI MN.TUE MN.VLC RD.LOR RD.MTLF RD.ORIF Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.37e+23 dyne-cm Mw = 4.85 Z = 22 km Plane Strike Dip Rake NP1 65 59 106 NP2 215 35 65 Principal Axes: Axis Value Plunge Azimuth T 2.37e+23 71 13 N 0.00e+00 14 236 P -2.37e+23 12 143 Moment Tensor: (dyne-cm) Component Value Mxx -1.20e+23 Mxy 1.15e+23 Mxz 1.09e+23 Myy -8.15e+22 Myz -1.31e+22 Mzz 2.02e+23 -------------- ----------------####-- ------------################ ----------#################### ----------######################## ---------########################### --------############################## --------############ ###############-- -------############# T ##############--- -------############## #############----- -------############################------- ------############################-------- ------#########################----------- -----#######################------------ -----####################--------------- ----################------------------ ############------------------------ ###------------------------ ---- #------------------------ P -- #----------------------- - ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.02e+23 1.09e+23 1.31e+22 1.09e+23 -1.20e+23 -1.15e+23 1.31e+22 -1.15e+23 -8.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191111105245/index.html |
STK = 215 DIP = 35 RAKE = 65 MW = 4.85 HS = 22.0
The NDK file is 20191111105245.ndk Depth control was not good originally. However the moment tensor solution agrees with first motions. The depth for the RMT depends on the velocity model. This was not easy.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/11/11 10:52:45:0 44.54 4.63 10.0 4.9 France Stations used: FR.ARBF FR.ARTF FR.ATE FR.BSTF FR.CALF FR.CARF FR.CFF FR.CHMF FR.EILF FR.ESCA FR.FILF FR.FNEB FR.HOHE FR.ILLF FR.ISO FR.LABF FR.LRVF FR.MLS FR.MLYF FR.MONQ FR.PAND FR.PYLO FR.RUSF FR.SALF FR.SAOF FR.SPIF FR.TURF FR.URDF FR.VIEF FR.WLS FR.ZELS GE.STU GE.WLF GU.BHB GU.ENR GU.GBOS GU.GORR GU.PCP GU.POPM GU.PZZ GU.RORO GU.RRL GU.RSP GU.SATI GU.STV IV.BDI IV.IMI IV.MONC IV.MSSA IV.PLMA IV.QLNO MN.BNI MN.TUE MN.VLC RD.LOR RD.MTLF RD.ORIF Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.37e+23 dyne-cm Mw = 4.85 Z = 22 km Plane Strike Dip Rake NP1 65 59 106 NP2 215 35 65 Principal Axes: Axis Value Plunge Azimuth T 2.37e+23 71 13 N 0.00e+00 14 236 P -2.37e+23 12 143 Moment Tensor: (dyne-cm) Component Value Mxx -1.20e+23 Mxy 1.15e+23 Mxz 1.09e+23 Myy -8.15e+22 Myz -1.31e+22 Mzz 2.02e+23 -------------- ----------------####-- ------------################ ----------#################### ----------######################## ---------########################### --------############################## --------############ ###############-- -------############# T ##############--- -------############## #############----- -------############################------- ------############################-------- ------#########################----------- -----#######################------------ -----####################--------------- ----################------------------ ############------------------------ ###------------------------ ---- #------------------------ P -- #----------------------- - ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.02e+23 1.09e+23 1.31e+22 1.09e+23 -1.20e+23 -1.15e+23 1.31e+22 -1.15e+23 -8.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191111105245/index.html |
|
GFZ Event gfz2019wcnm 19/11/11 10:52:45.50 France Epicenter: 44.59 4.65 MW 4.9 GFZ MOMENT TENSOR SOLUTION Depth 13 No. of sta: 20 Moment Tensor; Scale 10**16 Nm Mrr= 2.67 Mtt=-0.94 Mpp=-1.73 Mrt=-0.05 Mrp= 0.43 Mtp=-0.87 Principal axes: T Val= 2.72 Plg=84 Azm=249 N -0.40 5 32 P -2.32 4 122 Best Double Couple:Mo=2.5*10**16 NP1:Strike=218 Dip=41 Slip= 98 NP2: 27 49 83 ----------- ----------------# -------------#######--- -----------##########---- ----------##############----- --------################----- --------#################------ --------##################------- -------####### ########-------- ------######## T ########-------- ------######## #######--------- -----###################--------- ----##################--------- ---################---------- ---###############----------- --############----------- -#########------------- ####------------- ----------- Analysis performed by J. Saul Last updated 2019-11-11 11:03:38 UTC |
Click here for OCA solution http://sismoazur.oca.eu/resource/file?name=mwfm/result_complete.jpg&eventid=EMSC20191111105245 |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 235 45 -80 4.54 0.3256 WVFGRD96 2.0 45 40 -95 4.63 0.3774 WVFGRD96 3.0 45 45 -95 4.69 0.3784 WVFGRD96 4.0 230 40 -80 4.72 0.3406 WVFGRD96 5.0 250 40 -55 4.70 0.2985 WVFGRD96 6.0 260 40 -35 4.67 0.2785 WVFGRD96 7.0 265 45 -25 4.66 0.2679 WVFGRD96 8.0 265 35 -25 4.71 0.2721 WVFGRD96 9.0 270 30 -15 4.70 0.2776 WVFGRD96 10.0 275 30 -10 4.70 0.2870 WVFGRD96 11.0 275 30 -10 4.71 0.2964 WVFGRD96 12.0 280 35 0 4.72 0.3055 WVFGRD96 13.0 280 35 0 4.72 0.3135 WVFGRD96 14.0 115 60 70 4.83 0.3238 WVFGRD96 15.0 115 60 70 4.83 0.3355 WVFGRD96 16.0 215 35 65 4.81 0.3515 WVFGRD96 17.0 215 35 65 4.82 0.3647 WVFGRD96 18.0 210 35 60 4.82 0.3746 WVFGRD96 19.0 210 35 60 4.83 0.3815 WVFGRD96 20.0 210 35 60 4.84 0.3860 WVFGRD96 21.0 215 35 65 4.85 0.3862 WVFGRD96 22.0 215 35 65 4.85 0.3877 WVFGRD96 23.0 210 35 60 4.86 0.3874 WVFGRD96 24.0 210 40 60 4.86 0.3871 WVFGRD96 25.0 210 40 60 4.86 0.3856 WVFGRD96 26.0 215 40 65 4.87 0.3831 WVFGRD96 27.0 215 40 65 4.87 0.3800 WVFGRD96 28.0 215 40 65 4.87 0.3759 WVFGRD96 29.0 210 45 60 4.88 0.3712 WVFGRD96 30.0 210 45 60 4.88 0.3658 WVFGRD96 31.0 215 45 65 4.88 0.3592 WVFGRD96 32.0 215 45 65 4.89 0.3516 WVFGRD96 33.0 215 45 65 4.89 0.3430 WVFGRD96 34.0 215 50 70 4.89 0.3338 WVFGRD96 35.0 215 50 70 4.89 0.3237 WVFGRD96 36.0 260 40 -40 4.91 0.3150 WVFGRD96 37.0 260 40 -40 4.92 0.3085 WVFGRD96 38.0 260 40 -45 4.92 0.3011 WVFGRD96 39.0 255 40 -50 4.93 0.2930 WVFGRD96 40.0 260 35 -40 5.03 0.2767 WVFGRD96 41.0 255 35 -45 5.04 0.2724 WVFGRD96 42.0 255 35 -45 5.04 0.2670 WVFGRD96 43.0 250 35 -55 5.05 0.2611 WVFGRD96 44.0 250 35 -55 5.05 0.2551 WVFGRD96 45.0 250 35 -55 5.06 0.2485 WVFGRD96 46.0 250 40 -55 5.06 0.2420 WVFGRD96 47.0 250 40 -55 5.07 0.2357 WVFGRD96 48.0 245 40 -65 5.07 0.2291 WVFGRD96 49.0 245 40 -65 5.07 0.2229
The best solution is
WVFGRD96 22.0 215 35 65 4.85 0.3877
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: