USGS/SLU Moment Tensor Solution ENS 2019/11/02 14:11:33:5 44.32 17.61 10.0 4.7 Bosnia-Herzegovina Stations used: AC.KBN CR.ZAG HU.BEHE HU.KOVH HU.MORH MN.BLY MN.PDG MN.TRI OE.MYKA OE.OBKA OE.SOKA OX.DRE OX.PRED OX.SABO RO.BZS RO.MDVR RO.SIRR SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.86e+23 dyne-cm Mw = 4.78 Z = 18 km Plane Strike Dip Rake NP1 235 65 -30 NP2 339 63 -152 Principal Axes: Axis Value Plunge Azimuth T 1.86e+23 1 287 N 0.00e+00 52 19 P -1.86e+23 38 196 Moment Tensor: (dyne-cm) Component Value Mxx -8.95e+22 Mxy -8.35e+22 Mxz 8.81e+22 Myy 1.61e+23 Myz 2.15e+22 Mzz -7.13e+22 -------------- #######--------------- ############---------------- ###############--------------- ##################-------------##- ####################----############ ###################---############### T ################-------############### ##############---------############### ##############-------------############### ############----------------############## ##########-------------------############# #########--------------------############# ######----------------------############ #####------------------------########### ###-------------------------########## #------------ -----------######### ------------ P -----------######## ---------- -----------###### -----------------------##### -------------------### -------------- Global CMT Convention Moment Tensor: R T P -7.13e+22 8.81e+22 -2.15e+22 8.81e+22 -8.95e+22 8.35e+22 -2.15e+22 8.35e+22 1.61e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191102141133/index.html |
STK = 235 DIP = 65 RAKE = -30 MW = 4.78 HS = 18.0
The NDK file is 20191102141133.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/11/02 14:11:33:5 44.32 17.61 10.0 4.7 Bosnia-Herzegovina Stations used: AC.KBN CR.ZAG HU.BEHE HU.KOVH HU.MORH MN.BLY MN.PDG MN.TRI OE.MYKA OE.OBKA OE.SOKA OX.DRE OX.PRED OX.SABO RO.BZS RO.MDVR RO.SIRR SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.86e+23 dyne-cm Mw = 4.78 Z = 18 km Plane Strike Dip Rake NP1 235 65 -30 NP2 339 63 -152 Principal Axes: Axis Value Plunge Azimuth T 1.86e+23 1 287 N 0.00e+00 52 19 P -1.86e+23 38 196 Moment Tensor: (dyne-cm) Component Value Mxx -8.95e+22 Mxy -8.35e+22 Mxz 8.81e+22 Myy 1.61e+23 Myz 2.15e+22 Mzz -7.13e+22 -------------- #######--------------- ############---------------- ###############--------------- ##################-------------##- ####################----############ ###################---############### T ################-------############### ##############---------############### ##############-------------############### ############----------------############## ##########-------------------############# #########--------------------############# ######----------------------############ #####------------------------########### ###-------------------------########## #------------ -----------######### ------------ P -----------######## ---------- -----------###### -----------------------##### -------------------### -------------- Global CMT Convention Moment Tensor: R T P -7.13e+22 8.81e+22 -2.15e+22 8.81e+22 -8.95e+22 8.35e+22 -2.15e+22 8.35e+22 1.61e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191102141133/index.html |
Balkan Region Epicenter: 44.34 17.56 MW 4.8 GFZ MOMENT TENSOR SOLUTION Depth 10 No. of sta: 156 Moment Tensor; Scale 10**16 Nm Mrr= 2.17 Mtt=-2.08 Mpp=-0.09 Mrt=-0.69 Mrp=-0.44 Mtp= 0.39 Principal axes: T Val= 2.38 Plg=75 Azm=130 N -0.14 13 277 P -2.24 8 9 Best Double Couple:Mo=2.3*10**16 NP1:Strike=113 Dip=39 Slip= 111 NP2: 267 54 74 ------- P - ---------- ---- ----------------------- ------------------------- ----------------------------- ---------------#------------- #------##################------ ##---########################---- ##-#############################- #--############## ############# ----############# T ############# ------########### ############# ------######################### -------###################### ----------################--- ------------------------- ----------------------- ----------------- ----------- Analysis performed automatically Last updated 2019-11-02 15:44:44 UTC |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 265 45 65 4.45 0.3599 WVFGRD96 2.0 265 50 65 4.57 0.4753 WVFGRD96 3.0 115 45 110 4.64 0.5380 WVFGRD96 4.0 270 45 75 4.67 0.5394 WVFGRD96 5.0 245 55 45 4.63 0.5105 WVFGRD96 6.0 230 80 25 4.59 0.5139 WVFGRD96 7.0 230 85 20 4.61 0.5260 WVFGRD96 8.0 235 75 30 4.65 0.5396 WVFGRD96 9.0 230 65 -35 4.69 0.5576 WVFGRD96 10.0 230 65 -35 4.70 0.5727 WVFGRD96 11.0 230 65 -35 4.71 0.5850 WVFGRD96 12.0 235 70 -30 4.72 0.5949 WVFGRD96 13.0 235 70 -30 4.73 0.6025 WVFGRD96 14.0 235 70 -30 4.74 0.6080 WVFGRD96 15.0 235 70 -30 4.75 0.6116 WVFGRD96 16.0 235 65 -30 4.76 0.6142 WVFGRD96 17.0 235 65 -30 4.77 0.6155 WVFGRD96 18.0 235 65 -30 4.78 0.6158 WVFGRD96 19.0 235 65 -30 4.78 0.6152 WVFGRD96 20.0 235 65 -30 4.79 0.6139 WVFGRD96 21.0 235 65 -30 4.80 0.6117 WVFGRD96 22.0 235 65 -30 4.81 0.6092 WVFGRD96 23.0 235 65 -30 4.81 0.6057 WVFGRD96 24.0 235 65 -30 4.82 0.6013 WVFGRD96 25.0 235 60 -30 4.83 0.5969 WVFGRD96 26.0 235 60 -30 4.83 0.5920 WVFGRD96 27.0 235 60 -30 4.84 0.5860 WVFGRD96 28.0 235 60 -30 4.84 0.5793 WVFGRD96 29.0 235 60 -30 4.85 0.5717
The best solution is
WVFGRD96 18.0 235 65 -30 4.78 0.6158
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: