USGS/SLU Moment Tensor Solution ENS 2019/09/21 14:04:25:2 41.36 19.40 10.0 5.7 Albania Stations used: AC.KBN AC.VLO BS.ELND BS.PLVB CL.AGRP CL.MALA CL.MG00 CL.MG02 CL.MG05 CL.PSAM CL.TRIZ CR.ZAG HA.ATAL HA.ATHU HA.AXAR HA.KALE HA.KARY HA.LOUT HA.MAGU HA.MAKR HA.VILL HL.ATH HL.EVR HL.ITM HL.JAN HL.KEK HL.KYMI HL.KZN HL.LIA HL.LKR HL.NEO HL.PENT HL.PLG HL.PRK HL.PTL HL.RDO HL.SKY HL.SMTH HL.TETR HL.VLS HL.VLY HP.AMPL HP.AMT HP.ANX HP.DRO HP.EFP HP.FSK HP.GUR HP.LTK HP.PRMD HP.PVO HP.SERG HT.AGG HT.ALN HT.EVGI HT.IGT HT.KAVA HT.KNT HT.LIT HT.LKD2 HT.OUR HT.PAIG HT.SIGR HT.SOH HT.SRS HT.THAS HT.THE HU.BSZH HU.BUD HU.CSKK HU.EGYH HU.KOVH HU.TIH KO.GADA MN.KEK MN.KLV MN.PDG MN.THL MN.TRI OE.SOKA RO.BAIL RO.BANR RO.BZS RO.CJR RO.DEV RO.DRGR RO.GZR RO.HERR RO.HUMR RO.LOT RO.PUNG RO.SIRR RO.SULR RO.VLAD RO.VOIR SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.75e+24 dyne-cm Mw = 5.56 Z = 22 km Plane Strike Dip Rake NP1 149 65 88 NP2 335 25 95 Principal Axes: Axis Value Plunge Azimuth T 2.75e+24 70 55 N 0.00e+00 2 150 P -2.75e+24 20 241 Moment Tensor: (dyne-cm) Component Value Mxx -4.53e+23 Mxy -8.70e+23 Mxz 9.43e+23 Myy -1.65e+24 Myz 1.51e+24 Mzz 2.10e+24 -------------- ##############-------- ---##################------- ----####################------ ------######################------ -------#######################------ ---------#######################------ ----------########################------ -----------############ #########----- -------------########### T ##########----- -------------########### ##########----- --------------#######################----- ---------------######################----- ---------------#####################---- ---- ----------###################---- --- P -----------##################--- -- -------------###############--- ------------------#############--- ------------------##########-- --------------------######-- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.10e+24 9.43e+23 -1.51e+24 9.43e+23 -4.53e+23 8.70e+23 -1.51e+24 8.70e+23 -1.65e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190921140425/index.html |
STK = 335 DIP = 25 RAKE = 95 MW = 5.56 HS = 22.0
The NDK file is 20190921140425.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/09/21 14:04:25:2 41.36 19.40 10.0 5.7 Albania Stations used: AC.KBN AC.VLO BS.ELND BS.PLVB CL.AGRP CL.MALA CL.MG00 CL.MG02 CL.MG05 CL.PSAM CL.TRIZ CR.ZAG HA.ATAL HA.ATHU HA.AXAR HA.KALE HA.KARY HA.LOUT HA.MAGU HA.MAKR HA.VILL HL.ATH HL.EVR HL.ITM HL.JAN HL.KEK HL.KYMI HL.KZN HL.LIA HL.LKR HL.NEO HL.PENT HL.PLG HL.PRK HL.PTL HL.RDO HL.SKY HL.SMTH HL.TETR HL.VLS HL.VLY HP.AMPL HP.AMT HP.ANX HP.DRO HP.EFP HP.FSK HP.GUR HP.LTK HP.PRMD HP.PVO HP.SERG HT.AGG HT.ALN HT.EVGI HT.IGT HT.KAVA HT.KNT HT.LIT HT.LKD2 HT.OUR HT.PAIG HT.SIGR HT.SOH HT.SRS HT.THAS HT.THE HU.BSZH HU.BUD HU.CSKK HU.EGYH HU.KOVH HU.TIH KO.GADA MN.KEK MN.KLV MN.PDG MN.THL MN.TRI OE.SOKA RO.BAIL RO.BANR RO.BZS RO.CJR RO.DEV RO.DRGR RO.GZR RO.HERR RO.HUMR RO.LOT RO.PUNG RO.SIRR RO.SULR RO.VLAD RO.VOIR SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.75e+24 dyne-cm Mw = 5.56 Z = 22 km Plane Strike Dip Rake NP1 149 65 88 NP2 335 25 95 Principal Axes: Axis Value Plunge Azimuth T 2.75e+24 70 55 N 0.00e+00 2 150 P -2.75e+24 20 241 Moment Tensor: (dyne-cm) Component Value Mxx -4.53e+23 Mxy -8.70e+23 Mxz 9.43e+23 Myy -1.65e+24 Myz 1.51e+24 Mzz 2.10e+24 -------------- ##############-------- ---##################------- ----####################------ ------######################------ -------#######################------ ---------#######################------ ----------########################------ -----------############ #########----- -------------########### T ##########----- -------------########### ##########----- --------------#######################----- ---------------######################----- ---------------#####################---- ---- ----------###################---- --- P -----------##################--- -- -------------###############--- ------------------#############--- ------------------##########-- --------------------######-- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.10e+24 9.43e+23 -1.51e+24 9.43e+23 -4.53e+23 8.70e+23 -1.51e+24 8.70e+23 -1.65e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190921140425/index.html |
W-phase Moment Tensor (Mww) Moment 3.691e+17 N-m Magnitude 5.64 Mww Depth 17.5 km Percent DC 79% Half Duration 1.61 s Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 323 32 93 NP2 139 58 88 Principal Axes Axis Value Plunge Azimuth T 3.476e+17 N-m 76 44 N 0.397e+17 N-m 1 140 P -3.873e+17 N-m 13 231 |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 260 45 -70 5.12 0.1716 WVFGRD96 2.0 260 45 -70 5.20 0.2019 WVFGRD96 3.0 260 45 -70 5.27 0.2200 WVFGRD96 4.0 275 50 -45 5.29 0.2207 WVFGRD96 5.0 285 55 -25 5.29 0.2214 WVFGRD96 6.0 285 55 -25 5.31 0.2226 WVFGRD96 7.0 285 55 -20 5.32 0.2251 WVFGRD96 8.0 285 50 -20 5.36 0.2285 WVFGRD96 9.0 290 45 0 5.37 0.2303 WVFGRD96 10.0 335 25 90 5.49 0.2458 WVFGRD96 11.0 155 65 90 5.51 0.2679 WVFGRD96 12.0 155 65 90 5.51 0.2865 WVFGRD96 13.0 155 65 90 5.52 0.3018 WVFGRD96 14.0 340 30 95 5.52 0.3144 WVFGRD96 15.0 155 60 90 5.53 0.3248 WVFGRD96 16.0 155 60 90 5.53 0.3329 WVFGRD96 17.0 155 60 90 5.53 0.3389 WVFGRD96 18.0 150 60 85 5.54 0.3435 WVFGRD96 19.0 155 60 90 5.54 0.3466 WVFGRD96 20.0 150 65 85 5.55 0.3486 WVFGRD96 21.0 340 30 95 5.56 0.3518 WVFGRD96 22.0 335 25 95 5.56 0.3521 WVFGRD96 23.0 150 65 85 5.56 0.3518 WVFGRD96 24.0 150 65 90 5.57 0.3507 WVFGRD96 25.0 150 65 90 5.57 0.3491 WVFGRD96 26.0 150 65 90 5.57 0.3469 WVFGRD96 27.0 325 25 85 5.58 0.3444 WVFGRD96 28.0 325 25 85 5.58 0.3413 WVFGRD96 29.0 320 25 80 5.58 0.3377
The best solution is
WVFGRD96 22.0 335 25 95 5.56 0.3521
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: