USGS/SLU Moment Tensor Solution ENS 2019/06/21 06:50:56:1 47.15 -0.54 10.0 4.8 France Stations used: BE.MEM BE.UCC CH.BOURR CH.BRANT CH.DIX CH.EMING CH.FULLY CH.GIMEL CH.HASLI CH.ILLEZ CH.MTI02 CH.SAIRA CH.SALAN CH.SAVIG CH.SENIN CH.SULZ CH.TORNY G.CLF G.ECH GB.CCA1 GB.CWF GB.DYA GB.HMNX GB.HTL GB.WACR GE.WLF II.BFO II.XBFO Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 12 km Plane Strike Dip Rake NP1 185 90 15 NP2 95 75 180 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 11 51 N 0.00e+00 75 185 P -1.02e+22 11 319 Moment Tensor: (dyne-cm) Component Value Mxx -1.72e+21 Mxy 9.73e+21 Mxz -2.31e+20 Myy 1.72e+21 Myz 2.64e+21 Mzz -2.32e+14 ---------##### -------------######### ------------############# - P ------------############ --- ------------############ T # -------------------############ ## --------------------################## ---------------------################### --------------------#################### ---------------------##################### ##-------------------##################### ######---------------##################### #############--------##################--- ####################-------------------- ###################--------------------- ##################-------------------- #################------------------- ################------------------ ##############---------------- #############--------------- #########------------- #####--------- Global CMT Convention Moment Tensor: R T P -2.32e+14 -2.31e+20 -2.64e+21 -2.31e+20 -1.72e+21 -9.73e+21 -2.64e+21 -9.73e+21 1.72e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190621065056/index.html |
STK = 185 DIP = 90 RAKE = 15 MW = 3.94 HS = 12.0
The NDK file is 20190621065056.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/06/21 06:50:56:1 47.15 -0.54 10.0 4.8 France Stations used: BE.MEM BE.UCC CH.BOURR CH.BRANT CH.DIX CH.EMING CH.FULLY CH.GIMEL CH.HASLI CH.ILLEZ CH.MTI02 CH.SAIRA CH.SALAN CH.SAVIG CH.SENIN CH.SULZ CH.TORNY G.CLF G.ECH GB.CCA1 GB.CWF GB.DYA GB.HMNX GB.HTL GB.WACR GE.WLF II.BFO II.XBFO Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 12 km Plane Strike Dip Rake NP1 185 90 15 NP2 95 75 180 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 11 51 N 0.00e+00 75 185 P -1.02e+22 11 319 Moment Tensor: (dyne-cm) Component Value Mxx -1.72e+21 Mxy 9.73e+21 Mxz -2.31e+20 Myy 1.72e+21 Myz 2.64e+21 Mzz -2.32e+14 ---------##### -------------######### ------------############# - P ------------############ --- ------------############ T # -------------------############ ## --------------------################## ---------------------################### --------------------#################### ---------------------##################### ##-------------------##################### ######---------------##################### #############--------##################--- ####################-------------------- ###################--------------------- ##################-------------------- #################------------------- ################------------------ ##############---------------- #############--------------- #########------------- #####--------- Global CMT Convention Moment Tensor: R T P -2.32e+14 -2.31e+20 -2.64e+21 -2.31e+20 -1.72e+21 -9.73e+21 -2.64e+21 -9.73e+21 1.72e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190621065056/index.html |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 5 65 10 3.69 0.4608 WVFGRD96 2.0 0 75 0 3.73 0.5405 WVFGRD96 3.0 0 80 -5 3.76 0.5847 WVFGRD96 4.0 5 80 10 3.81 0.6142 WVFGRD96 5.0 5 85 10 3.83 0.6354 WVFGRD96 6.0 5 85 10 3.85 0.6502 WVFGRD96 7.0 185 90 -5 3.87 0.6598 WVFGRD96 8.0 185 80 10 3.89 0.6715 WVFGRD96 9.0 185 80 10 3.91 0.6762 WVFGRD96 10.0 185 85 15 3.92 0.6790 WVFGRD96 11.0 185 85 15 3.93 0.6805 WVFGRD96 12.0 185 90 15 3.94 0.6808 WVFGRD96 13.0 5 90 -10 3.96 0.6798 WVFGRD96 14.0 185 85 10 3.96 0.6793 WVFGRD96 15.0 5 90 -10 3.97 0.6750 WVFGRD96 16.0 185 80 10 3.98 0.6740 WVFGRD96 17.0 185 80 10 3.99 0.6702 WVFGRD96 18.0 185 80 5 4.00 0.6656 WVFGRD96 19.0 185 80 5 4.01 0.6602 WVFGRD96 20.0 185 80 5 4.01 0.6537 WVFGRD96 21.0 185 80 5 4.02 0.6465 WVFGRD96 22.0 180 80 5 4.01 0.6390 WVFGRD96 23.0 180 80 5 4.02 0.6311 WVFGRD96 24.0 180 80 5 4.03 0.6224 WVFGRD96 25.0 180 80 5 4.04 0.6131 WVFGRD96 26.0 180 80 0 4.04 0.6035 WVFGRD96 27.0 180 80 0 4.05 0.5933 WVFGRD96 28.0 180 80 0 4.06 0.5827 WVFGRD96 29.0 180 80 0 4.07 0.5714
The best solution is
WVFGRD96 12.0 185 90 15 3.94 0.6808
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: