USGS/SLU Moment Tensor Solution ENS 2019/06/01 07:00:28:3 40.50 20.84 10.0 4.8 Albania Stations used: CL.AGRP CL.MALA CL.MG05 CL.PSAM HA.AXAR HA.KALE HA.VILL HL.EVR HL.JAN HL.KZN HL.NEO HL.PENT HL.RDO HL.RLS HL.TETR HL.THL HL.VLS HP.AMPL HP.EFP HP.FSK HP.LTK HP.PVO HT.ALN HT.EVGI HT.HORT HT.IGT HT.KAVA HT.KNT HT.KPRO HT.LKD2 HT.NEST HT.PSDA HT.SOH HT.TYRN HU.KOVH HU.MORH MN.KEK MN.KLV MN.PDG MN.TIR RO.BZS RO.COPA RO.GZR RO.HERR RO.LOT RO.MDVR RO.PUNG Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.72e+23 dyne-cm Mw = 4.89 Z = 12 km Plane Strike Dip Rake NP1 250 70 30 NP2 149 62 157 Principal Axes: Axis Value Plunge Azimuth T 2.72e+23 35 112 N 0.00e+00 54 281 P -2.72e+23 5 18 Moment Tensor: (dyne-cm) Component Value Mxx -2.20e+23 Mxy -1.42e+23 Mxz -7.04e+22 Myy 1.32e+23 Myz 1.11e+23 Mzz 8.75e+22 ----------- P --------------- ---- ###------------------------- ####-------------------------- ######---------------------------- #######----------------------------- ########------------------------------ ##########--------------################ ##########--------###################### ############--############################ ###########--############################# ########-----############################# ######--------################## ####### ###------------################ T ###### #---------------############### ###### ----------------###################### -----------------################### ------------------################ ------------------############ --------------------######## ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 8.75e+22 -7.04e+22 -1.11e+23 -7.04e+22 -2.20e+23 1.42e+23 -1.11e+23 1.42e+23 1.32e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190601070028/index.html |
STK = 250 DIP = 70 RAKE = 30 MW = 4.89 HS = 12.0
The NDK file is 20190601070028.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/06/01 07:00:28:3 40.50 20.84 10.0 4.8 Albania Stations used: CL.AGRP CL.MALA CL.MG05 CL.PSAM HA.AXAR HA.KALE HA.VILL HL.EVR HL.JAN HL.KZN HL.NEO HL.PENT HL.RDO HL.RLS HL.TETR HL.THL HL.VLS HP.AMPL HP.EFP HP.FSK HP.LTK HP.PVO HT.ALN HT.EVGI HT.HORT HT.IGT HT.KAVA HT.KNT HT.KPRO HT.LKD2 HT.NEST HT.PSDA HT.SOH HT.TYRN HU.KOVH HU.MORH MN.KEK MN.KLV MN.PDG MN.TIR RO.BZS RO.COPA RO.GZR RO.HERR RO.LOT RO.MDVR RO.PUNG Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.72e+23 dyne-cm Mw = 4.89 Z = 12 km Plane Strike Dip Rake NP1 250 70 30 NP2 149 62 157 Principal Axes: Axis Value Plunge Azimuth T 2.72e+23 35 112 N 0.00e+00 54 281 P -2.72e+23 5 18 Moment Tensor: (dyne-cm) Component Value Mxx -2.20e+23 Mxy -1.42e+23 Mxz -7.04e+22 Myy 1.32e+23 Myz 1.11e+23 Mzz 8.75e+22 ----------- P --------------- ---- ###------------------------- ####-------------------------- ######---------------------------- #######----------------------------- ########------------------------------ ##########--------------################ ##########--------###################### ############--############################ ###########--############################# ########-----############################# ######--------################## ####### ###------------################ T ###### #---------------############### ###### ----------------###################### -----------------################### ------------------################ ------------------############ --------------------######## ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 8.75e+22 -7.04e+22 -1.11e+23 -7.04e+22 -2.20e+23 1.42e+23 -1.11e+23 1.42e+23 1.32e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190601070028/index.html |
W-phase Moment Tensor (Mww) Moment 4.404e+16 N-m Magnitude 5.03 Mww Depth 11.5 km Percent DC 91% Half Duration 0.84 s Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 34 58 -72 NP2 182 37 -116 Principal Axes Axis Value Plunge Azimuth T 4.295e+16 N-m 11 111 N 0.211e+16 N-m 15 204 P -4.506e+16 N-m 71 347 |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 230 55 -55 4.62 0.4169 WVFGRD96 2.0 225 55 -60 4.73 0.5160 WVFGRD96 3.0 225 60 -60 4.78 0.5269 WVFGRD96 4.0 35 30 -70 4.84 0.5505 WVFGRD96 5.0 30 30 -75 4.86 0.5637 WVFGRD96 6.0 230 60 -50 4.82 0.5614 WVFGRD96 7.0 250 70 30 4.80 0.5688 WVFGRD96 8.0 215 55 -70 4.91 0.5973 WVFGRD96 9.0 250 80 40 4.85 0.5909 WVFGRD96 10.0 250 75 35 4.86 0.5982 WVFGRD96 11.0 250 70 30 4.88 0.6021 WVFGRD96 12.0 250 70 30 4.89 0.6040 WVFGRD96 13.0 250 70 30 4.90 0.6022 WVFGRD96 14.0 250 70 30 4.90 0.5977 WVFGRD96 15.0 250 70 30 4.91 0.5909 WVFGRD96 16.0 250 70 25 4.92 0.5839 WVFGRD96 17.0 250 70 25 4.93 0.5763 WVFGRD96 18.0 250 70 25 4.93 0.5675 WVFGRD96 19.0 250 70 25 4.94 0.5577 WVFGRD96 20.0 250 70 25 4.94 0.5477 WVFGRD96 21.0 250 70 25 4.95 0.5363 WVFGRD96 22.0 250 70 25 4.96 0.5249 WVFGRD96 23.0 250 70 20 4.97 0.5135 WVFGRD96 24.0 250 70 20 4.97 0.5028 WVFGRD96 25.0 250 70 20 4.98 0.4919 WVFGRD96 26.0 250 75 20 4.98 0.4809 WVFGRD96 27.0 250 75 20 4.98 0.4706 WVFGRD96 28.0 250 75 20 4.99 0.4611 WVFGRD96 29.0 250 75 20 5.00 0.4520
The best solution is
WVFGRD96 12.0 250 70 30 4.89 0.6040
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: