USGS/SLU Moment Tensor Solution ENS 2018/09/15 03:09:14:3 43.83 15.80 2.0 4.2 Croatia Stations used: CZ.JAVC HU.BEHE HU.BUD HU.CSKK HU.EGYH HU.KOVH HU.MPLH HU.TIH NI.PALA OE.MYKA OE.OBKA OE.SOKA SJ.BBLS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VOJS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.91e+22 dyne-cm Mw = 4.12 Z = 14 km Plane Strike Dip Rake NP1 161 72 154 NP2 260 65 20 Principal Axes: Axis Value Plunge Azimuth T 1.91e+22 31 119 N 0.00e+00 58 309 P -1.91e+22 5 212 Moment Tensor: (dyne-cm) Component Value Mxx -1.04e+22 Mxy -1.44e+22 Mxz -2.81e+21 Myy 5.40e+21 Myz 8.18e+21 Mzz 4.99e+21 -------------- ####------------------ #######--------------------- ########---------------------- ##########------------------------ ###########------------------------- ############-------------------------- ##############------#############------- ############--#########################- #########------########################### ######----------########################## ###-------------########################## #----------------######################### -----------------############## ###### ------------------############# T ###### -----------------############# ##### -----------------################### -----------------################# -----------------############# --- -----------########### P ------------####### -------------# Global CMT Convention Moment Tensor: R T P 4.99e+21 -2.81e+21 -8.18e+21 -2.81e+21 -1.04e+22 1.44e+22 -8.18e+21 1.44e+22 5.40e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180915030914/index.html |
STK = 260 DIP = 65 RAKE = 20 MW = 4.12 HS = 14.0
The NDK file is 20180915030914.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2018/09/15 03:09:14:3 43.83 15.80 2.0 4.2 Croatia Stations used: CZ.JAVC HU.BEHE HU.BUD HU.CSKK HU.EGYH HU.KOVH HU.MPLH HU.TIH NI.PALA OE.MYKA OE.OBKA OE.SOKA SJ.BBLS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VOJS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.91e+22 dyne-cm Mw = 4.12 Z = 14 km Plane Strike Dip Rake NP1 161 72 154 NP2 260 65 20 Principal Axes: Axis Value Plunge Azimuth T 1.91e+22 31 119 N 0.00e+00 58 309 P -1.91e+22 5 212 Moment Tensor: (dyne-cm) Component Value Mxx -1.04e+22 Mxy -1.44e+22 Mxz -2.81e+21 Myy 5.40e+21 Myz 8.18e+21 Mzz 4.99e+21 -------------- ####------------------ #######--------------------- ########---------------------- ##########------------------------ ###########------------------------- ############-------------------------- ##############------#############------- ############--#########################- #########------########################### ######----------########################## ###-------------########################## #----------------######################### -----------------############## ###### ------------------############# T ###### -----------------############# ##### -----------------################### -----------------################# -----------------############# --- -----------########### P ------------####### -------------# Global CMT Convention Moment Tensor: R T P 4.99e+21 -2.81e+21 -8.18e+21 -2.81e+21 -1.04e+22 1.44e+22 -8.18e+21 1.44e+22 5.40e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180915030914/index.html |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 250 70 -35 3.85 0.3044 WVFGRD96 2.0 250 65 -30 3.92 0.3603 WVFGRD96 3.0 250 60 -30 3.96 0.3814 WVFGRD96 4.0 255 65 -20 3.96 0.3960 WVFGRD96 5.0 255 70 -20 3.97 0.4082 WVFGRD96 6.0 260 70 15 3.99 0.4226 WVFGRD96 7.0 260 70 15 4.01 0.4376 WVFGRD96 8.0 260 70 20 4.04 0.4490 WVFGRD96 9.0 260 70 20 4.05 0.4580 WVFGRD96 10.0 260 70 20 4.07 0.4645 WVFGRD96 11.0 260 65 20 4.09 0.4689 WVFGRD96 12.0 260 65 20 4.10 0.4717 WVFGRD96 13.0 260 65 20 4.11 0.4732 WVFGRD96 14.0 260 65 20 4.12 0.4734 WVFGRD96 15.0 260 65 15 4.13 0.4730 WVFGRD96 16.0 260 65 15 4.14 0.4717 WVFGRD96 17.0 260 65 15 4.15 0.4695 WVFGRD96 18.0 260 65 15 4.16 0.4664 WVFGRD96 19.0 260 65 15 4.17 0.4625 WVFGRD96 20.0 260 65 15 4.18 0.4585 WVFGRD96 21.0 260 65 15 4.19 0.4534 WVFGRD96 22.0 260 65 15 4.19 0.4479 WVFGRD96 23.0 260 65 15 4.20 0.4417 WVFGRD96 24.0 260 65 15 4.21 0.4349 WVFGRD96 25.0 260 65 15 4.22 0.4277 WVFGRD96 26.0 260 65 15 4.23 0.4203 WVFGRD96 27.0 260 65 15 4.23 0.4124 WVFGRD96 28.0 260 65 15 4.24 0.4042 WVFGRD96 29.0 260 65 15 4.25 0.3954
The best solution is
WVFGRD96 14.0 260 65 20 4.12 0.4734
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: