USGS/SLU Moment Tensor Solution ENS 2018/08/11 15:38:34:6 41.58 20.12 10.0 5.1 Albania Stations used: BS.ELND CL.AGRP CL.MG00 CL.ROD3 CR.STON HA.AXAR HA.VILL HL.DION HL.EVR HL.JAN HL.KEK HL.KLV HL.KZN HL.LIA HL.NEO HL.NVR HL.PENT HL.PRK HL.PTL HL.RDO HL.RLS HL.THL HL.VLS HP.ANX HP.FSK HT.ALN HT.DMLN HT.FNA HT.HORT HT.IGT HT.KAVA HT.KOKK HT.KPRO HT.LKD2 HT.LRSO HT.NEST HT.NYDR HT.SOH HT.THAS HT.THE HT.TSLK HU.KOVH KO.GADA ME.KOME RO.ARR RO.BANR RO.BZS RO.DEV RO.DRGR RO.GZR RO.HERR RO.LOT RO.MDVR RO.PUNG RO.SIRR RO.VLAD SJ.BBLS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.57e+23 dyne-cm Mw = 5.04 Z = 24 km Plane Strike Dip Rake NP1 80 65 40 NP2 330 54 149 Principal Axes: Axis Value Plunge Azimuth T 4.57e+23 45 300 N 0.00e+00 44 107 P -4.57e+23 6 203 Moment Tensor: (dyne-cm) Component Value Mxx -3.27e+23 Mxy -2.60e+23 Mxz 1.60e+23 Myy 1.02e+23 Myz -1.79e+23 Mzz 2.25e+23 -------------- ###------------------- ###########----------------- ###############--------------- ###################--------------- ######################-------------- ######## #############-------------- ######### T ###############------------- ######### ################------------ ##############################-----------# ###############################--------### ###############################-----###### ################################-######### -###########################---######### -------#############------------######## -------------------------------####### ------------------------------###### -----------------------------##### ---------------------------### ----- -----------------### -- P ----------------# ------------- Global CMT Convention Moment Tensor: R T P 2.25e+23 1.60e+23 1.79e+23 1.60e+23 -3.27e+23 2.60e+23 1.79e+23 2.60e+23 1.02e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180811153834/index.html |
STK = 80 DIP = 65 RAKE = 40 MW = 5.04 HS = 24.0
The NDK file is 20180811153834.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2018/08/11 15:38:34:6 41.58 20.12 10.0 5.1 Albania Stations used: BS.ELND CL.AGRP CL.MG00 CL.ROD3 CR.STON HA.AXAR HA.VILL HL.DION HL.EVR HL.JAN HL.KEK HL.KLV HL.KZN HL.LIA HL.NEO HL.NVR HL.PENT HL.PRK HL.PTL HL.RDO HL.RLS HL.THL HL.VLS HP.ANX HP.FSK HT.ALN HT.DMLN HT.FNA HT.HORT HT.IGT HT.KAVA HT.KOKK HT.KPRO HT.LKD2 HT.LRSO HT.NEST HT.NYDR HT.SOH HT.THAS HT.THE HT.TSLK HU.KOVH KO.GADA ME.KOME RO.ARR RO.BANR RO.BZS RO.DEV RO.DRGR RO.GZR RO.HERR RO.LOT RO.MDVR RO.PUNG RO.SIRR RO.VLAD SJ.BBLS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.57e+23 dyne-cm Mw = 5.04 Z = 24 km Plane Strike Dip Rake NP1 80 65 40 NP2 330 54 149 Principal Axes: Axis Value Plunge Azimuth T 4.57e+23 45 300 N 0.00e+00 44 107 P -4.57e+23 6 203 Moment Tensor: (dyne-cm) Component Value Mxx -3.27e+23 Mxy -2.60e+23 Mxz 1.60e+23 Myy 1.02e+23 Myz -1.79e+23 Mzz 2.25e+23 -------------- ###------------------- ###########----------------- ###############--------------- ###################--------------- ######################-------------- ######## #############-------------- ######### T ###############------------- ######### ################------------ ##############################-----------# ###############################--------### ###############################-----###### ################################-######### -###########################---######### -------#############------------######## -------------------------------####### ------------------------------###### -----------------------------##### ---------------------------### ----- -----------------### -- P ----------------# ------------- Global CMT Convention Moment Tensor: R T P 2.25e+23 1.60e+23 1.79e+23 1.60e+23 -3.27e+23 2.60e+23 1.79e+23 2.60e+23 1.02e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180811153834/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 55 50 -75 4.64 0.3882 WVFGRD96 2.0 55 45 -70 4.73 0.4567 WVFGRD96 3.0 55 45 -75 4.80 0.4796 WVFGRD96 4.0 70 55 -55 4.81 0.4313 WVFGRD96 5.0 75 70 -45 4.79 0.4014 WVFGRD96 6.0 80 80 40 4.78 0.4084 WVFGRD96 7.0 80 80 40 4.80 0.4389 WVFGRD96 8.0 75 85 45 4.84 0.4620 WVFGRD96 9.0 80 80 45 4.86 0.4944 WVFGRD96 10.0 80 75 45 4.88 0.5245 WVFGRD96 11.0 80 75 45 4.89 0.5530 WVFGRD96 12.0 80 75 45 4.90 0.5781 WVFGRD96 13.0 85 65 45 4.93 0.6013 WVFGRD96 14.0 85 65 45 4.94 0.6228 WVFGRD96 15.0 85 65 45 4.95 0.6410 WVFGRD96 16.0 85 65 45 4.96 0.6565 WVFGRD96 17.0 80 70 40 4.96 0.6695 WVFGRD96 18.0 80 65 40 4.98 0.6808 WVFGRD96 19.0 80 65 40 4.99 0.6908 WVFGRD96 20.0 80 65 40 5.00 0.6986 WVFGRD96 21.0 80 65 40 5.01 0.7036 WVFGRD96 22.0 80 65 40 5.02 0.7080 WVFGRD96 23.0 80 65 40 5.03 0.7106 WVFGRD96 24.0 80 65 40 5.04 0.7119 WVFGRD96 25.0 80 65 40 5.05 0.7116 WVFGRD96 26.0 75 70 40 5.05 0.7100 WVFGRD96 27.0 75 70 40 5.05 0.7076 WVFGRD96 28.0 75 70 40 5.06 0.7039 WVFGRD96 29.0 75 70 40 5.07 0.6989 WVFGRD96 30.0 75 70 40 5.08 0.6930 WVFGRD96 31.0 75 70 40 5.09 0.6861 WVFGRD96 32.0 75 70 40 5.09 0.6787 WVFGRD96 33.0 75 70 40 5.10 0.6705 WVFGRD96 34.0 75 70 40 5.11 0.6614 WVFGRD96 35.0 75 65 40 5.12 0.6520 WVFGRD96 36.0 75 65 40 5.13 0.6423 WVFGRD96 37.0 75 65 35 5.15 0.6329 WVFGRD96 38.0 75 65 35 5.15 0.6234 WVFGRD96 39.0 75 70 35 5.16 0.6132 WVFGRD96 40.0 75 70 45 5.24 0.5998 WVFGRD96 41.0 75 70 45 5.25 0.5880 WVFGRD96 42.0 80 65 45 5.26 0.5753 WVFGRD96 43.0 80 65 45 5.27 0.5619 WVFGRD96 44.0 80 65 45 5.27 0.5479 WVFGRD96 45.0 80 65 45 5.28 0.5334 WVFGRD96 46.0 75 70 45 5.27 0.5193 WVFGRD96 47.0 75 70 40 5.28 0.5055 WVFGRD96 48.0 75 70 40 5.28 0.4913 WVFGRD96 49.0 75 70 40 5.29 0.4770
The best solution is
WVFGRD96 24.0 80 65 40 5.04 0.7119
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: