USGS/SLU Moment Tensor Solution ENS 2018/06/07 06:45:17:0 45.29 18.10 4.0 3.9 Croatia Stations used: CZ.CKRC CZ.GOPC CZ.JAVC CZ.KHC CZ.PRU HU.BEHE HU.CSKK HU.EGYH HU.KOVH HU.MORH HU.MPLH HU.PSZ HU.SOP PL.NIE SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.75e+21 dyne-cm Mw = 3.56 Z = 11 km Plane Strike Dip Rake NP1 75 60 50 NP2 314 48 138 Principal Axes: Axis Value Plunge Azimuth T 2.75e+21 55 292 N 0.00e+00 34 98 P -2.75e+21 7 192 Moment Tensor: (dyne-cm) Component Value Mxx -2.47e+21 Mxy -8.71e+20 Mxz 7.90e+20 Myy 6.44e+20 Myz -1.13e+21 Mzz 1.83e+21 -------------- ---------------------- ---------------------------- ############------------------ ##################---------------- ######################-------------- #########################------------- ############################------------ ########## #################---------- ########### T ##################-------### ########### ###################-----#### ##################################--###### #################################--####### #############################------##### --#######################----------##### -------#########------------------#### ---------------------------------### --------------------------------## ------------------------------ ---------------------------- ----- -------------- - P ---------- Global CMT Convention Moment Tensor: R T P 1.83e+21 7.90e+20 1.13e+21 7.90e+20 -2.47e+21 8.71e+20 1.13e+21 8.71e+20 6.44e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180607064517/index.html |
STK = 75 DIP = 60 RAKE = 50 MW = 3.56 HS = 11.0
The NDK file is 20180607064517.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2018/06/07 06:45:17:0 45.29 18.10 4.0 3.9 Croatia Stations used: CZ.CKRC CZ.GOPC CZ.JAVC CZ.KHC CZ.PRU HU.BEHE HU.CSKK HU.EGYH HU.KOVH HU.MORH HU.MPLH HU.PSZ HU.SOP PL.NIE SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.75e+21 dyne-cm Mw = 3.56 Z = 11 km Plane Strike Dip Rake NP1 75 60 50 NP2 314 48 138 Principal Axes: Axis Value Plunge Azimuth T 2.75e+21 55 292 N 0.00e+00 34 98 P -2.75e+21 7 192 Moment Tensor: (dyne-cm) Component Value Mxx -2.47e+21 Mxy -8.71e+20 Mxz 7.90e+20 Myy 6.44e+20 Myz -1.13e+21 Mzz 1.83e+21 -------------- ---------------------- ---------------------------- ############------------------ ##################---------------- ######################-------------- #########################------------- ############################------------ ########## #################---------- ########### T ##################-------### ########### ###################-----#### ##################################--###### #################################--####### #############################------##### --#######################----------##### -------#########------------------#### ---------------------------------### --------------------------------## ------------------------------ ---------------------------- ----- -------------- - P ---------- Global CMT Convention Moment Tensor: R T P 1.83e+21 7.90e+20 1.13e+21 7.90e+20 -2.47e+21 8.71e+20 1.13e+21 8.71e+20 6.44e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180607064517/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 240 75 -15 3.22 0.3213 WVFGRD96 2.0 235 65 -25 3.34 0.3672 WVFGRD96 3.0 345 55 40 3.42 0.3725 WVFGRD96 4.0 235 75 -40 3.42 0.3821 WVFGRD96 5.0 235 80 -45 3.43 0.4128 WVFGRD96 6.0 60 90 45 3.44 0.4463 WVFGRD96 7.0 240 90 -40 3.45 0.4787 WVFGRD96 8.0 240 90 -45 3.51 0.5048 WVFGRD96 9.0 75 65 55 3.54 0.5366 WVFGRD96 10.0 255 45 40 3.57 0.5638 WVFGRD96 11.0 75 60 50 3.56 0.5793 WVFGRD96 12.0 255 45 40 3.57 0.5756 WVFGRD96 13.0 70 65 40 3.57 0.5757 WVFGRD96 14.0 70 65 40 3.57 0.5656 WVFGRD96 15.0 65 70 35 3.57 0.5552 WVFGRD96 16.0 65 70 30 3.58 0.5422 WVFGRD96 17.0 65 70 30 3.59 0.5274 WVFGRD96 18.0 60 75 30 3.59 0.5125 WVFGRD96 19.0 60 80 25 3.60 0.4983 WVFGRD96 20.0 45 65 -40 3.58 0.4926 WVFGRD96 21.0 45 65 -40 3.60 0.4918 WVFGRD96 22.0 45 65 -40 3.61 0.4888 WVFGRD96 23.0 45 65 -40 3.61 0.4847 WVFGRD96 24.0 45 65 -40 3.62 0.4797 WVFGRD96 25.0 50 65 -35 3.63 0.4740 WVFGRD96 26.0 50 65 -35 3.64 0.4674 WVFGRD96 27.0 50 65 -35 3.64 0.4599 WVFGRD96 28.0 50 65 -35 3.65 0.4517 WVFGRD96 29.0 50 65 -30 3.66 0.4425
The best solution is
WVFGRD96 11.0 75 60 50 3.56 0.5793
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: