USGS/SLU Moment Tensor Solution ENS 2017/10/25 22:50:03:2 43.71 17.52 2.0 4.7 Bosnia Herzegovina Stations used: AC.KBN CR.STON CR.ZAG HL.NVR HT.GRG HT.HORT HT.KNT HT.SRS HU.BEHE HU.KOVH HU.MORH MN.BLY MN.BZS MN.DIVS MN.PDG MN.TIR MN.VTS OE.ARSA OE.KBA OE.OBKA OE.SOKA OX.ACOM OX.CGRP OX.CLUD OX.DRE OX.FUSE OX.PRED OX.SABO OX.ZOU2 RO.BZS RO.CJR RO.DEV RO.HERR RO.LOT RO.MDVR RO.PUNG SJ.BBLS SL.BOJS SL.CEY SL.CRNS SL.GBAS SL.GCIS SL.KOGS SL.LJU SL.MOZS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.22e+22 dyne-cm Mw = 4.35 Z = 16 km Plane Strike Dip Rake NP1 250 75 20 NP2 155 71 164 Principal Axes: Axis Value Plunge Azimuth T 4.22e+22 25 113 N 0.00e+00 65 285 P -4.22e+22 3 22 Moment Tensor: (dyne-cm) Component Value Mxx -3.10e+22 Mxy -2.70e+22 Mxz -8.23e+21 Myy 2.38e+22 Myz 1.39e+22 Mzz 7.21e+21 ------------ P ##-------------- --- #####----------------------- ######------------------------ ########-------------------------- #########--------------------------- ###########--------------------------- ############-----------------########### #############---------################## ###############---######################## #############--########################### ##########------########################## #######----------######################### ###--------------################ #### #-----------------############### T #### ------------------############## ### ------------------################## -------------------############### ------------------############ -------------------######### ------------------#### -------------- Global CMT Convention Moment Tensor: R T P 7.21e+21 -8.23e+21 -1.39e+22 -8.23e+21 -3.10e+22 2.70e+22 -1.39e+22 2.70e+22 2.38e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171025225003/index.html |
STK = 250 DIP = 75 RAKE = 20 MW = 4.35 HS = 16.0
The NDK file is 20171025225003.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2017/10/25 22:50:03:2 43.71 17.52 2.0 4.7 Bosnia Herzegovina Stations used: AC.KBN CR.STON CR.ZAG HL.NVR HT.GRG HT.HORT HT.KNT HT.SRS HU.BEHE HU.KOVH HU.MORH MN.BLY MN.BZS MN.DIVS MN.PDG MN.TIR MN.VTS OE.ARSA OE.KBA OE.OBKA OE.SOKA OX.ACOM OX.CGRP OX.CLUD OX.DRE OX.FUSE OX.PRED OX.SABO OX.ZOU2 RO.BZS RO.CJR RO.DEV RO.HERR RO.LOT RO.MDVR RO.PUNG SJ.BBLS SL.BOJS SL.CEY SL.CRNS SL.GBAS SL.GCIS SL.KOGS SL.LJU SL.MOZS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.22e+22 dyne-cm Mw = 4.35 Z = 16 km Plane Strike Dip Rake NP1 250 75 20 NP2 155 71 164 Principal Axes: Axis Value Plunge Azimuth T 4.22e+22 25 113 N 0.00e+00 65 285 P -4.22e+22 3 22 Moment Tensor: (dyne-cm) Component Value Mxx -3.10e+22 Mxy -2.70e+22 Mxz -8.23e+21 Myy 2.38e+22 Myz 1.39e+22 Mzz 7.21e+21 ------------ P ##-------------- --- #####----------------------- ######------------------------ ########-------------------------- #########--------------------------- ###########--------------------------- ############-----------------########### #############---------################## ###############---######################## #############--########################### ##########------########################## #######----------######################### ###--------------################ #### #-----------------############### T #### ------------------############## ### ------------------################## -------------------############### ------------------############ -------------------######### ------------------#### -------------- Global CMT Convention Moment Tensor: R T P 7.21e+21 -8.23e+21 -1.39e+22 -8.23e+21 -3.10e+22 2.70e+22 -1.39e+22 2.70e+22 2.38e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171025225003/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 245 75 -15 3.98 0.2892 WVFGRD96 2.0 245 70 -20 4.08 0.3728 WVFGRD96 3.0 240 65 -30 4.15 0.4058 WVFGRD96 4.0 245 70 -20 4.15 0.4274 WVFGRD96 5.0 250 80 -10 4.15 0.4430 WVFGRD96 6.0 250 85 -10 4.18 0.4570 WVFGRD96 7.0 70 85 15 4.20 0.4716 WVFGRD96 8.0 70 80 20 4.24 0.4867 WVFGRD96 9.0 70 80 20 4.26 0.4966 WVFGRD96 10.0 70 80 20 4.27 0.5043 WVFGRD96 11.0 70 80 20 4.29 0.5100 WVFGRD96 12.0 70 80 20 4.30 0.5140 WVFGRD96 13.0 70 80 20 4.31 0.5168 WVFGRD96 14.0 70 80 20 4.32 0.5181 WVFGRD96 15.0 70 80 20 4.33 0.5179 WVFGRD96 16.0 250 75 20 4.35 0.5182 WVFGRD96 17.0 250 75 20 4.36 0.5171 WVFGRD96 18.0 250 75 20 4.37 0.5154 WVFGRD96 19.0 250 75 20 4.38 0.5128 WVFGRD96 20.0 250 75 20 4.38 0.5094 WVFGRD96 21.0 250 75 20 4.39 0.5058 WVFGRD96 22.0 250 75 20 4.40 0.5016 WVFGRD96 23.0 250 75 20 4.41 0.4967 WVFGRD96 24.0 250 80 20 4.41 0.4914 WVFGRD96 25.0 250 75 20 4.42 0.4856 WVFGRD96 26.0 250 75 20 4.43 0.4794 WVFGRD96 27.0 250 75 20 4.44 0.4726 WVFGRD96 28.0 250 80 20 4.44 0.4657 WVFGRD96 29.0 245 80 20 4.46 0.4584
The best solution is
WVFGRD96 16.0 250 75 20 4.35 0.5182
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: