2016/09/23 23:11:20 45.76 26.63 94 5.6 Romania
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2016/09/23 23:11:20:0 45.76 26.63 94.0 5.6 Romania Stations used: GE.PSZ GE.TIRR HT.ALN HT.KNT HU.BSZH HU.BUD HU.KOVH HU.LTVH HU.TRPA KO.ARMT KO.ISK MN.DIVS MN.PDG MN.VTS SJ.FRGS Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.015 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 3.16e+24 dyne-cm Mw = 5.60 Z = 92 km Plane Strike Dip Rake NP1 310 59 106 NP2 100 35 65 Principal Axes: Axis Value Plunge Azimuth T 3.16e+24 71 258 N 0.00e+00 14 121 P -3.16e+24 12 28 Moment Tensor: (dyne-cm) Component Value Mxx -2.35e+24 Mxy -1.18e+24 Mxz -7.75e+23 Myy -3.43e+23 Myz -1.25e+24 Mzz 2.69e+24 -------------- ------------------ - --------------------- P ---- ---------------------- ----- ############---------------------- #################------------------- #####################----------------- #########################--------------- ###########################------------- -#############################------------ -############## #############----------- --############# T ###############--------- ---############ ################-------- ---###############################------ -----##############################---## ------############################--## -------#########################--## ----------##################-----# ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.69e+24 -7.75e+23 1.25e+24 -7.75e+23 -2.35e+24 1.18e+24 1.25e+24 1.18e+24 -3.43e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160923231120/index.html |
STK = 100 DIP = 35 RAKE = 65 MW = 5.60 HS = 92.0
The NDK file is 20160923231120.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2016/09/23 23:11:20:0 45.76 26.63 94.0 5.6 Romania Stations used: GE.PSZ GE.TIRR HT.ALN HT.KNT HU.BSZH HU.BUD HU.KOVH HU.LTVH HU.TRPA KO.ARMT KO.ISK MN.DIVS MN.PDG MN.VTS SJ.FRGS Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.015 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 3.16e+24 dyne-cm Mw = 5.60 Z = 92 km Plane Strike Dip Rake NP1 310 59 106 NP2 100 35 65 Principal Axes: Axis Value Plunge Azimuth T 3.16e+24 71 258 N 0.00e+00 14 121 P -3.16e+24 12 28 Moment Tensor: (dyne-cm) Component Value Mxx -2.35e+24 Mxy -1.18e+24 Mxz -7.75e+23 Myy -3.43e+23 Myz -1.25e+24 Mzz 2.69e+24 -------------- ------------------ - --------------------- P ---- ---------------------- ----- ############---------------------- #################------------------- #####################----------------- #########################--------------- ###########################------------- -#############################------------ -############## #############----------- --############# T ###############--------- ---############ ################-------- ---###############################------ -----##############################---## ------############################--## -------#########################--## ----------##################-----# ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.69e+24 -7.75e+23 1.25e+24 -7.75e+23 -2.35e+24 1.18e+24 1.25e+24 1.18e+24 -3.43e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160923231120/index.html |
September 23, 2016, ROMANIA, MW=5.7 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201609232311A DATA: IU CU II IC G GE DK KP LD MN L.P.BODY WAVES: 70S, 105C, T= 40 MANTLE WAVES: 25S, 25C, T=125 SURFACE WAVES: 146S, 283C, T= 50 TIMESTAMP: Q-20160924110959 CENTROID LOCATION: ORIGIN TIME: 23:11:24.2 0.2 LAT:45.81N 0.01;LON: 26.61E 0.01 DEP: 84.5 1.3;TRIANG HDUR: 1.8 MOMENT TENSOR: SCALE 10**24 D-CM RR= 4.200 0.088; TT=-2.820 0.083 PP=-1.380 0.076; RT=-1.560 0.066 RP= 1.040 0.056; TP= 2.390 0.060 PRINCIPAL AXES: 1.(T) VAL= 4.584;PLG=78;AZM=210 2.(N) 0.394; 1; 306 3.(P) -4.978; 12; 36 BEST DBLE.COUPLE:M0= 4.78*10**24 NP1: STRIKE=128;DIP=33;SLIP= 92 NP2: STRIKE=305;DIP=57;SLIP= 89 ----------- ----------------- ------------------- P - ---###--------------- --- -#############--------------- --################------------- --###################---------- ---#####################--------- ---######################-------- ----########## ##########------ -----######### T ###########----- -----######## ############--- ------######################--- -------#####################- ---------################## -----------##########-- ------------------- ----------- |
W-phase Moment Tensor (Mww) Moment 3.711e+17 N-m Magnitude 5.6 Mww Depth 90.5 km Percent DC 95 % Half Duration 4 s Catalog US Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 311 59 96 NP2 120 32 81 Principal Axes Axis Value Plunge Azimuth T 3.668e+17 N-m 76 238 N 0.085e+17 N-m 5 128 P -3.753e+17 N-m 13 37 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 210 rtr taper w 0.1 hp c 0.015 n 3 lp c 0.04 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 90 40 -90 4.81 0.1514 WVFGRD96 4.0 85 40 -85 4.89 0.1685 WVFGRD96 6.0 90 40 -75 4.91 0.1533 WVFGRD96 8.0 200 50 -80 4.96 0.1638 WVFGRD96 10.0 205 55 -75 4.95 0.1471 WVFGRD96 12.0 245 80 -30 4.90 0.1440 WVFGRD96 14.0 70 90 25 4.91 0.1462 WVFGRD96 16.0 245 90 -30 4.91 0.1496 WVFGRD96 18.0 65 80 25 4.92 0.1544 WVFGRD96 20.0 70 60 10 4.96 0.1620 WVFGRD96 22.0 70 55 10 4.99 0.1703 WVFGRD96 24.0 65 60 20 4.99 0.1800 WVFGRD96 26.0 65 60 20 5.01 0.1903 WVFGRD96 28.0 65 60 20 5.03 0.2009 WVFGRD96 30.0 65 55 20 5.06 0.2118 WVFGRD96 32.0 65 55 20 5.08 0.2229 WVFGRD96 34.0 65 55 20 5.10 0.2338 WVFGRD96 36.0 65 60 15 5.13 0.2449 WVFGRD96 38.0 65 60 15 5.15 0.2556 WVFGRD96 40.0 70 50 25 5.24 0.2592 WVFGRD96 42.0 70 50 30 5.26 0.2707 WVFGRD96 44.0 70 45 40 5.28 0.2825 WVFGRD96 46.0 70 45 40 5.29 0.2962 WVFGRD96 48.0 70 45 45 5.31 0.3083 WVFGRD96 50.0 75 45 50 5.33 0.3219 WVFGRD96 52.0 75 45 50 5.34 0.3351 WVFGRD96 54.0 80 45 55 5.36 0.3476 WVFGRD96 56.0 80 45 55 5.38 0.3599 WVFGRD96 58.0 85 45 60 5.39 0.3712 WVFGRD96 60.0 85 45 60 5.41 0.3822 WVFGRD96 62.0 85 45 60 5.42 0.3923 WVFGRD96 64.0 90 45 65 5.44 0.4016 WVFGRD96 66.0 90 45 65 5.45 0.4101 WVFGRD96 68.0 90 40 65 5.47 0.4186 WVFGRD96 70.0 85 45 55 5.47 0.4309 WVFGRD96 72.0 90 45 60 5.49 0.4434 WVFGRD96 74.0 95 40 60 5.51 0.4557 WVFGRD96 76.0 95 40 60 5.52 0.4676 WVFGRD96 78.0 95 40 60 5.54 0.4780 WVFGRD96 80.0 95 40 60 5.55 0.4870 WVFGRD96 82.0 95 40 60 5.55 0.4943 WVFGRD96 84.0 100 35 65 5.57 0.5002 WVFGRD96 86.0 100 35 65 5.58 0.5066 WVFGRD96 88.0 100 35 65 5.59 0.5113 WVFGRD96 90.0 100 35 65 5.60 0.5142 WVFGRD96 92.0 100 35 65 5.60 0.5155 WVFGRD96 94.0 100 35 65 5.61 0.5150 WVFGRD96 96.0 105 30 65 5.63 0.5139 WVFGRD96 98.0 105 30 65 5.63 0.5127 WVFGRD96 100.0 105 30 70 5.63 0.5099 WVFGRD96 102.0 105 30 70 5.63 0.5063 WVFGRD96 104.0 110 25 70 5.65 0.5020 WVFGRD96 106.0 110 25 70 5.65 0.4981 WVFGRD96 108.0 115 25 75 5.66 0.4934 WVFGRD96 110.0 115 25 75 5.66 0.4879 WVFGRD96 112.0 115 25 75 5.67 0.4811 WVFGRD96 114.0 115 25 75 5.67 0.4734 WVFGRD96 116.0 115 25 75 5.67 0.4649 WVFGRD96 118.0 120 20 80 5.68 0.4569 WVFGRD96 120.0 120 20 80 5.68 0.4488 WVFGRD96 122.0 120 20 80 5.68 0.4399 WVFGRD96 124.0 120 20 80 5.68 0.4303 WVFGRD96 126.0 95 25 30 5.63 0.4245 WVFGRD96 128.0 95 25 30 5.63 0.4187
The best solution is
WVFGRD96 92.0 100 35 65 5.60 0.5155
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 210 rtr taper w 0.1 hp c 0.015 n 3 lp c 0.04 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Sep 24 21:15:56 CDT 2016