2016/09/11 13:10:07 41.98 21.50 5 5.2 FYR Macedonia
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2016/09/11 13:10:07:2 41.98 21.50 5.0 5.2 FYR Macedonia Stations used: AC.KBN AC.SRN AC.VLO CR.STON CR.ZAG GE.TIRR HT.ALN HT.GRG HT.HORT HT.KNT HT.LIT HT.PAIG HT.SIGR HT.SOH HT.SRS HT.THE HU.CSKK HU.KOVH HU.MORH HU.MPLH HU.TIH KO.GADA MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS SJ.BBLS SJ.FRGS SL.DOBS SL.GBRS SL.GCIS SL.GOLS SL.GROS SL.KOGS SL.VISS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.13e+23 dyne-cm Mw = 4.93 Z = 14 km Plane Strike Dip Rake NP1 125 75 -35 NP2 225 56 -162 Principal Axes: Axis Value Plunge Azimuth T 3.13e+23 12 179 N 0.00e+00 52 285 P -3.13e+23 35 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.93e+23 Mxy -4.25e+22 Mxz -8.92e+22 Myy -2.03e+23 Myz -1.43e+23 Mzz -8.97e+22 ############## ###################### ############################ ######################-------- ###################--------------- --###############------------------- ----############---------------------- -------#######-------------------------- ---------####------------------- ----- -----------#--------------------- P ------ -----------###------------------- ------ ----------######-------------------------- ---------#########------------------------ -------#############-------------------- ------#################----------------- -----####################------------- ---##########################------- --################################ ############################## ############# ############ ########## T ######### ###### ##### Global CMT Convention Moment Tensor: R T P -8.97e+22 -8.92e+22 1.43e+23 -8.92e+22 2.93e+23 4.25e+22 1.43e+23 4.25e+22 -2.03e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160911131007/index.html |
STK = 125 DIP = 75 RAKE = -35 MW = 4.93 HS = 14.0
The NDK file is 20160911131007.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2016/09/11 13:10:07:2 41.98 21.50 5.0 5.2 FYR Macedonia Stations used: AC.KBN AC.SRN AC.VLO CR.STON CR.ZAG GE.TIRR HT.ALN HT.GRG HT.HORT HT.KNT HT.LIT HT.PAIG HT.SIGR HT.SOH HT.SRS HT.THE HU.CSKK HU.KOVH HU.MORH HU.MPLH HU.TIH KO.GADA MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS SJ.BBLS SJ.FRGS SL.DOBS SL.GBRS SL.GCIS SL.GOLS SL.GROS SL.KOGS SL.VISS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.13e+23 dyne-cm Mw = 4.93 Z = 14 km Plane Strike Dip Rake NP1 125 75 -35 NP2 225 56 -162 Principal Axes: Axis Value Plunge Azimuth T 3.13e+23 12 179 N 0.00e+00 52 285 P -3.13e+23 35 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.93e+23 Mxy -4.25e+22 Mxz -8.92e+22 Myy -2.03e+23 Myz -1.43e+23 Mzz -8.97e+22 ############## ###################### ############################ ######################-------- ###################--------------- --###############------------------- ----############---------------------- -------#######-------------------------- ---------####------------------- ----- -----------#--------------------- P ------ -----------###------------------- ------ ----------######-------------------------- ---------#########------------------------ -------#############-------------------- ------#################----------------- -----####################------------- ---##########################------- --################################ ############################## ############# ############ ########## T ######### ###### ##### Global CMT Convention Moment Tensor: R T P -8.97e+22 -8.92e+22 1.43e+23 -8.92e+22 2.93e+23 4.25e+22 1.43e+23 4.25e+22 -2.03e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160911131007/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 125 90 0 4.55 0.3856 WVFGRD96 2.0 130 75 15 4.65 0.4714 WVFGRD96 3.0 130 65 10 4.69 0.4991 WVFGRD96 4.0 130 60 5 4.72 0.5217 WVFGRD96 5.0 125 60 -15 4.75 0.5464 WVFGRD96 6.0 125 60 -20 4.78 0.5752 WVFGRD96 7.0 125 65 -30 4.80 0.6053 WVFGRD96 8.0 120 65 -40 4.86 0.6289 WVFGRD96 9.0 120 65 -40 4.88 0.6579 WVFGRD96 10.0 120 65 -40 4.89 0.6803 WVFGRD96 11.0 120 65 -40 4.91 0.6955 WVFGRD96 12.0 120 65 -40 4.92 0.7042 WVFGRD96 13.0 125 70 -35 4.92 0.7097 WVFGRD96 14.0 125 75 -35 4.93 0.7113 WVFGRD96 15.0 125 75 -35 4.94 0.7106 WVFGRD96 16.0 125 75 -30 4.94 0.7067 WVFGRD96 17.0 125 75 -30 4.95 0.7007 WVFGRD96 18.0 125 75 -30 4.96 0.6920 WVFGRD96 19.0 125 80 -30 4.97 0.6830 WVFGRD96 20.0 125 80 -30 4.98 0.6726 WVFGRD96 21.0 125 80 -30 4.99 0.6612 WVFGRD96 22.0 125 80 -30 4.99 0.6489 WVFGRD96 23.0 130 85 -30 5.00 0.6368 WVFGRD96 24.0 130 85 -30 5.00 0.6248 WVFGRD96 25.0 130 85 -30 5.01 0.6116 WVFGRD96 26.0 130 85 -30 5.02 0.5983 WVFGRD96 27.0 130 85 -30 5.02 0.5846 WVFGRD96 28.0 310 85 25 5.03 0.5718 WVFGRD96 29.0 310 85 25 5.04 0.5593
The best solution is
WVFGRD96 14.0 125 75 -35 4.93 0.7113
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sun Sep 11 10:03:48 CDT 2016