2016/05/22 08:58:32 41.61 23.30 10 4.5 Bulgaria
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2016/05/22 08:58:32:0 41.61 23.30 10.0 4.5 Bulgaria Stations used: AC.KBN AC.VLO HT.FNA HT.GRG HT.HORT HT.KNT HT.LKD2 HT.SOH HT.SRS HT.THE HU.MORH IV.SCTE MN.BLY MN.DIVS MN.TIR MN.VTS SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.80e+22 dyne-cm Mw = 4.32 Z = 17 km Plane Strike Dip Rake NP1 38 69 -148 NP2 295 60 -25 Principal Axes: Axis Value Plunge Azimuth T 3.80e+22 5 165 N 0.00e+00 52 68 P -3.80e+22 38 259 Moment Tensor: (dyne-cm) Component Value Mxx 3.43e+22 Mxy -1.39e+22 Mxz 3.97e+15 Myy -2.04e+22 Myz 1.90e+22 Mzz -1.39e+22 ############## ###################### ###########################- ############################-- #############################----- #####----#####################------ -------------------###########-------- ------------------------######---------- ---------------------------##----------- -----------------------------##----------- ----------------------------#####--------- ------- -----------------########------- ------- P ----------------###########----- ------ --------------##############--- ----------------------################-- -------------------################### ----------------#################### -------------##################### --------###################### ---######################### ############## ##### ########## T # Global CMT Convention Moment Tensor: R T P -1.39e+22 3.97e+15 -1.90e+22 3.97e+15 3.43e+22 1.39e+22 -1.90e+22 1.39e+22 -2.04e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160522085832/index.html |
STK = 295 DIP = 60 RAKE = -25 MW = 4.32 HS = 17.0
The NDK file is 20160522085832.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2016/05/22 08:58:32:0 41.61 23.30 10.0 4.5 Bulgaria Stations used: AC.KBN AC.VLO HT.FNA HT.GRG HT.HORT HT.KNT HT.LKD2 HT.SOH HT.SRS HT.THE HU.MORH IV.SCTE MN.BLY MN.DIVS MN.TIR MN.VTS SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.80e+22 dyne-cm Mw = 4.32 Z = 17 km Plane Strike Dip Rake NP1 38 69 -148 NP2 295 60 -25 Principal Axes: Axis Value Plunge Azimuth T 3.80e+22 5 165 N 0.00e+00 52 68 P -3.80e+22 38 259 Moment Tensor: (dyne-cm) Component Value Mxx 3.43e+22 Mxy -1.39e+22 Mxz 3.97e+15 Myy -2.04e+22 Myz 1.90e+22 Mzz -1.39e+22 ############## ###################### ###########################- ############################-- #############################----- #####----#####################------ -------------------###########-------- ------------------------######---------- ---------------------------##----------- -----------------------------##----------- ----------------------------#####--------- ------- -----------------########------- ------- P ----------------###########----- ------ --------------##############--- ----------------------################-- -------------------################### ----------------#################### -------------##################### --------###################### ---######################### ############## ##### ########## T # Global CMT Convention Moment Tensor: R T P -1.39e+22 3.97e+15 -1.90e+22 3.97e+15 3.43e+22 1.39e+22 -1.90e+22 1.39e+22 -2.04e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160522085832/index.html |
Regional Moment Tensor (Mwr) Moment 3.795e+15 N-m Magnitude 4.3 Mwr Depth 18.0 km Percent DC 94 % Half Duration – Catalog US Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 296 48 -7 NP2 31 85 -137 Principal Axes Axis Value Plunge Azimuth T 3.854e+15 N-m 25 156 N -0.121e+15 N-m 47 37 P -3.733e+15 N-m 33 263 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 300 90 5 3.84 0.2786 WVFGRD96 2.0 120 90 -5 3.95 0.3687 WVFGRD96 3.0 300 90 5 4.00 0.4005 WVFGRD96 4.0 130 55 25 4.10 0.4353 WVFGRD96 5.0 130 65 30 4.11 0.4673 WVFGRD96 6.0 125 80 30 4.12 0.5007 WVFGRD96 7.0 300 90 -30 4.14 0.5298 WVFGRD96 8.0 300 85 -35 4.19 0.5638 WVFGRD96 9.0 300 85 -30 4.20 0.5938 WVFGRD96 10.0 290 55 -35 4.26 0.6328 WVFGRD96 11.0 295 60 -30 4.26 0.6700 WVFGRD96 12.0 295 60 -30 4.28 0.6978 WVFGRD96 13.0 295 60 -30 4.29 0.7171 WVFGRD96 14.0 295 60 -30 4.29 0.7298 WVFGRD96 15.0 295 60 -25 4.31 0.7380 WVFGRD96 16.0 295 60 -25 4.31 0.7430 WVFGRD96 17.0 295 60 -25 4.32 0.7444 WVFGRD96 18.0 295 60 -25 4.33 0.7430 WVFGRD96 19.0 300 70 -20 4.32 0.7396 WVFGRD96 20.0 300 70 -20 4.33 0.7356 WVFGRD96 21.0 300 70 -20 4.34 0.7304 WVFGRD96 22.0 300 70 -20 4.34 0.7242 WVFGRD96 23.0 300 70 -20 4.35 0.7165 WVFGRD96 24.0 300 70 -20 4.35 0.7073 WVFGRD96 25.0 300 70 -20 4.36 0.6971 WVFGRD96 26.0 300 70 -20 4.36 0.6873 WVFGRD96 27.0 300 70 -20 4.37 0.6772 WVFGRD96 28.0 300 70 -15 4.38 0.6666 WVFGRD96 29.0 300 70 -15 4.39 0.6555
The best solution is
WVFGRD96 17.0 295 60 -25 4.32 0.7444
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sun May 22 10:26:59 CDT 2016