2015/05/22 01:52:16 51.37 1.31 10.0 3.7 United Kingdom
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2015/05/22 01:52:16:0 51.37 1.31 10.0 3.7 United Kingdom Stations used: CH.BALST CH.BOURR CH.BRANT CH.DAGMA CH.MTI02 CH.ROTHE EI.IWEX GB.CCA1 GB.CWF GB.DRUM GB.DYA GB.EDI GB.EDMD GB.ESK GB.FOEL GB.HMNX GB.HPK GB.IOMK GB.JSA GB.KESW GB.LBWR GB.MCH1 GB.STNC GB.WACR GB.WLF1 G.CLF G.ECH GE.IBBN GE.ILTH GE.WLF GR.AHRW GR.BUG Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.89e+21 dyne-cm Mw = 3.66 Z = 14 km Plane Strike Dip Rake NP1 214 71 85 NP2 50 20 105 Principal Axes: Axis Value Plunge Azimuth T 3.89e+21 64 115 N 0.00e+00 5 216 P -3.89e+21 26 308 Moment Tensor: (dyne-cm) Component Value Mxx -1.08e+21 Mxy 1.25e+21 Mxz -1.60e+21 Myy -1.34e+21 Myz 2.58e+21 Mzz 2.42e+21 -------------- ---------------------- -----------------------##### ---------------------######### --- ---------------############# ---- P -------------###############- ----- -----------##################- -------------------###################-- -----------------#####################-- -----------------#######################-- ----------------#######################--- ---------------########## ###########--- --------------########### T ###########--- ------------############ ##########--- -----------#########################---- ---------#########################---- --------########################---- ------#######################----- ----#####################----- #####################------- ----########---------- -------------- Global CMT Convention Moment Tensor: R T P 2.42e+21 -1.60e+21 -2.58e+21 -1.60e+21 -1.08e+21 -1.25e+21 -2.58e+21 -1.25e+21 -1.34e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150522015216/index.html |
STK = 50 DIP = 20 RAKE = 105 MW = 3.66 HS = 14.0
The NDK file is 20150522015216.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2015/05/22 01:52:16:0 51.37 1.31 10.0 3.7 United Kingdom Stations used: CH.BALST CH.BOURR CH.BRANT CH.DAGMA CH.MTI02 CH.ROTHE EI.IWEX GB.CCA1 GB.CWF GB.DRUM GB.DYA GB.EDI GB.EDMD GB.ESK GB.FOEL GB.HMNX GB.HPK GB.IOMK GB.JSA GB.KESW GB.LBWR GB.MCH1 GB.STNC GB.WACR GB.WLF1 G.CLF G.ECH GE.IBBN GE.ILTH GE.WLF GR.AHRW GR.BUG Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.89e+21 dyne-cm Mw = 3.66 Z = 14 km Plane Strike Dip Rake NP1 214 71 85 NP2 50 20 105 Principal Axes: Axis Value Plunge Azimuth T 3.89e+21 64 115 N 0.00e+00 5 216 P -3.89e+21 26 308 Moment Tensor: (dyne-cm) Component Value Mxx -1.08e+21 Mxy 1.25e+21 Mxz -1.60e+21 Myy -1.34e+21 Myz 2.58e+21 Mzz 2.42e+21 -------------- ---------------------- -----------------------##### ---------------------######### --- ---------------############# ---- P -------------###############- ----- -----------##################- -------------------###################-- -----------------#####################-- -----------------#######################-- ----------------#######################--- ---------------########## ###########--- --------------########### T ###########--- ------------############ ##########--- -----------#########################---- ---------#########################---- --------########################---- ------#######################----- ----#####################----- #####################------- ----########---------- -------------- Global CMT Convention Moment Tensor: R T P 2.42e+21 -1.60e+21 -2.58e+21 -1.60e+21 -1.08e+21 -1.25e+21 -2.58e+21 -1.25e+21 -1.34e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150522015216/index.html |
Regional Moment Tensor (Mwr) Moment 4.298e+14 N-m Magnitude 3.69 Depth 17.0 km Percent DC 78% Half Duration – Catalog US (us10002bap) Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 186 78 67 NP2 70 26 152 Principal Axes Axis Value Plunge Azimuth T 4.523 52 69 N -0.495 23 191 P -4.029 29 294 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 40 45 90 3.44 0.4485 WVFGRD96 2.0 40 50 90 3.51 0.4763 WVFGRD96 3.0 35 55 80 3.57 0.4350 WVFGRD96 4.0 340 10 35 3.75 0.4363 WVFGRD96 5.0 355 10 55 3.70 0.4837 WVFGRD96 6.0 210 80 85 3.67 0.5100 WVFGRD96 7.0 210 80 85 3.64 0.5225 WVFGRD96 8.0 50 10 110 3.70 0.5299 WVFGRD96 9.0 210 80 85 3.68 0.5390 WVFGRD96 10.0 210 75 85 3.68 0.5444 WVFGRD96 11.0 210 75 85 3.66 0.5477 WVFGRD96 12.0 210 75 85 3.66 0.5488 WVFGRD96 13.0 215 70 85 3.66 0.5486 WVFGRD96 14.0 50 20 105 3.66 0.5488 WVFGRD96 15.0 215 70 85 3.66 0.5469 WVFGRD96 16.0 215 70 80 3.66 0.5440 WVFGRD96 17.0 215 70 80 3.66 0.5399 WVFGRD96 18.0 215 70 80 3.66 0.5348 WVFGRD96 19.0 215 70 80 3.66 0.5287 WVFGRD96 20.0 225 30 -80 3.68 0.5235 WVFGRD96 21.0 230 35 -75 3.70 0.5192 WVFGRD96 22.0 230 35 -75 3.70 0.5149 WVFGRD96 23.0 230 35 -75 3.70 0.5106 WVFGRD96 24.0 225 35 -75 3.70 0.5052 WVFGRD96 25.0 235 40 -70 3.71 0.4992 WVFGRD96 26.0 240 40 -65 3.71 0.4924 WVFGRD96 27.0 240 40 -65 3.72 0.4854 WVFGRD96 28.0 235 40 -65 3.72 0.4785 WVFGRD96 29.0 235 40 -65 3.73 0.4712
The best solution is
WVFGRD96 14.0 50 20 105 3.66 0.5488
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Fri May 22 09:05:27 CDT 2015