USGS/SLU Moment Tensor Solution ENS 2015/02/23 16:16:29:0 39.04 -2.65 10.0 4.8 Spain Stations used: CA.CAVN CA.CBEU CA.CMAS CA.CORG CA.CPAL CA.CTRE ES.EADA ES.EALB ES.EARI ES.EBER ES.EGRO ES.EIBI ES.ELAN ES.ELGU ES.ELOB ES.EMIN ES.EMOS ES.EMUR ES.ENIJ ES.EORO ES.EPLA ES.EPOB ES.EQES ES.EQTA ES.ERTA ES.ESAC ES.ESBB SC.SC02 SC.SC03 SC.SC04 SC.SC05 SC.SC06 SC.SC08 SC.SC09 SC.SC10 SC.SC11 SC.SC12 SC.SC13 SC.SC14 SC.SC15 SC.SC16 SC.SC17 SC.SC18 SC.SC20 SC.SC21 SC.SC22 SC.SC23 SC.SC24 SC.SC25 SC.SC26 SC.SC27 SC.SC28 SC.SC30 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.02e+22 dyne-cm Mw = 4.57 Z = 18 km Plane Strike Dip Rake NP1 248 73 -132 NP2 140 45 -25 Principal Axes: Axis Value Plunge Azimuth T 9.02e+22 17 8 N 0.00e+00 40 263 P -9.02e+22 45 116 Moment Tensor: (dyne-cm) Component Value Mxx 7.26e+22 Mxy 2.88e+22 Mxz 4.43e+22 Myy -3.45e+22 Myz -3.71e+22 Mzz -3.81e+22 ######## ### ############ T ####### -############## ########## -############################# --################################ ---################################# ----################################## -----####################--------------- ------##############-------------------- -------#########-------------------------- --------#####----------------------------- --------#--------------------------------- -------##-------------------- ---------- ----#####------------------- P --------- --#########----------------- --------- ###########--------------------------- ############------------------------ ##############-------------------- ###############--------------- ##################---------- ###################### ############## Global CMT Convention Moment Tensor: R T P -3.81e+22 4.43e+22 3.71e+22 4.43e+22 7.26e+22 -2.88e+22 3.71e+22 -2.88e+22 -3.45e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150223161629/index.html |
STK = 140 DIP = 45 RAKE = -25 MW = 4.57 HS = 18.0
The NDK file is 20150223161629.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2015/02/23 16:16:29:0 39.04 -2.65 10.0 4.8 Spain Stations used: CA.CAVN CA.CBEU CA.CMAS CA.CORG CA.CPAL CA.CTRE ES.EADA ES.EALB ES.EARI ES.EBER ES.EGRO ES.EIBI ES.ELAN ES.ELGU ES.ELOB ES.EMIN ES.EMOS ES.EMUR ES.ENIJ ES.EORO ES.EPLA ES.EPOB ES.EQES ES.EQTA ES.ERTA ES.ESAC ES.ESBB SC.SC02 SC.SC03 SC.SC04 SC.SC05 SC.SC06 SC.SC08 SC.SC09 SC.SC10 SC.SC11 SC.SC12 SC.SC13 SC.SC14 SC.SC15 SC.SC16 SC.SC17 SC.SC18 SC.SC20 SC.SC21 SC.SC22 SC.SC23 SC.SC24 SC.SC25 SC.SC26 SC.SC27 SC.SC28 SC.SC30 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.02e+22 dyne-cm Mw = 4.57 Z = 18 km Plane Strike Dip Rake NP1 248 73 -132 NP2 140 45 -25 Principal Axes: Axis Value Plunge Azimuth T 9.02e+22 17 8 N 0.00e+00 40 263 P -9.02e+22 45 116 Moment Tensor: (dyne-cm) Component Value Mxx 7.26e+22 Mxy 2.88e+22 Mxz 4.43e+22 Myy -3.45e+22 Myz -3.71e+22 Mzz -3.81e+22 ######## ### ############ T ####### -############## ########## -############################# --################################ ---################################# ----################################## -----####################--------------- ------##############-------------------- -------#########-------------------------- --------#####----------------------------- --------#--------------------------------- -------##-------------------- ---------- ----#####------------------- P --------- --#########----------------- --------- ###########--------------------------- ############------------------------ ##############-------------------- ###############--------------- ##################---------- ###################### ############## Global CMT Convention Moment Tensor: R T P -3.81e+22 4.43e+22 3.71e+22 4.43e+22 7.26e+22 -2.88e+22 3.71e+22 -2.88e+22 -3.45e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150223161629/index.html |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 70 45 90 4.15 0.2542 WVFGRD96 2.0 250 45 90 4.27 0.3094 WVFGRD96 3.0 70 80 20 4.23 0.2463 WVFGRD96 4.0 245 80 -45 4.29 0.2466 WVFGRD96 5.0 65 90 55 4.30 0.2777 WVFGRD96 6.0 65 90 55 4.31 0.3097 WVFGRD96 7.0 245 90 -55 4.32 0.3354 WVFGRD96 8.0 65 85 60 4.40 0.3550 WVFGRD96 9.0 250 80 60 4.41 0.3802 WVFGRD96 10.0 250 80 60 4.43 0.4026 WVFGRD96 11.0 250 80 60 4.44 0.4206 WVFGRD96 12.0 250 75 60 4.46 0.4337 WVFGRD96 13.0 245 80 60 4.47 0.4442 WVFGRD96 14.0 245 80 60 4.49 0.4510 WVFGRD96 15.0 135 45 -35 4.53 0.4553 WVFGRD96 16.0 135 45 -35 4.55 0.4627 WVFGRD96 17.0 135 45 -35 4.56 0.4663 WVFGRD96 18.0 140 45 -25 4.57 0.4665 WVFGRD96 19.0 140 45 -25 4.58 0.4646 WVFGRD96 20.0 140 45 -25 4.60 0.4602 WVFGRD96 21.0 140 40 -25 4.60 0.4525 WVFGRD96 22.0 135 40 -25 4.61 0.4447 WVFGRD96 23.0 135 40 -25 4.62 0.4351 WVFGRD96 24.0 135 40 -25 4.63 0.4239 WVFGRD96 25.0 135 35 -20 4.64 0.4113 WVFGRD96 26.0 135 35 -20 4.64 0.3987 WVFGRD96 27.0 140 35 -15 4.65 0.3850 WVFGRD96 28.0 135 30 -20 4.65 0.3710 WVFGRD96 29.0 135 30 -20 4.66 0.3561
The best solution is
WVFGRD96 18.0 140 45 -25 4.57 0.4665
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: