2014/06/24 19:39:53 43.79 24.47 7 4.2 Bulgaria
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/06/24 19:39:53:9 43.79 24.47 7.0 4.2 Bulgaria Stations used: BS.PLD GE.TIRR HT.ALN HT.GRG HT.HORT HT.KNT HT.PAIG HT.SIGR HT.SRS HT.THE HU.BUD HU.TRPA MN.BLY MN.PDG MN.TIR MN.VTS RO.BZS RO.CFR SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +90 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 7.76e+21 dyne-cm Mw = 3.86 Z = 11 km Plane Strike Dip Rake NP1 224 85 170 NP2 315 80 5 Principal Axes: Axis Value Plunge Azimuth T 7.76e+21 11 179 N 0.00e+00 79 18 P -7.76e+21 4 270 Moment Tensor: (dyne-cm) Component Value Mxx 7.50e+21 Mxy -1.16e+20 Mxz -1.40e+21 Myy -7.73e+21 Myz 5.00e+20 Mzz 2.31e+20 ############## ###################### ############################ --##########################-- -------#####################------ ----------#################--------- --------------############------------ -----------------########--------------- -------------------####----------------- ------------------------------------------ ------------------####------------------ P ----------------#######----------------- ---------------##########--------------- --------------##############------------ ------------#################----------- ----------####################-------- -------#######################------ -----#########################---- -############################- ############################ ########## ######### ###### T ##### Global CMT Convention Moment Tensor: R T P 2.31e+20 -1.40e+21 -5.00e+20 -1.40e+21 7.50e+21 1.16e+20 -5.00e+20 1.16e+20 -7.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140624193953/index.html |
STK = 315 DIP = 80 RAKE = 5 MW = 3.86 HS = 11.0
The NDK file is 20140624193953.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/06/24 19:39:53:9 43.79 24.47 7.0 4.2 Bulgaria Stations used: BS.PLD GE.TIRR HT.ALN HT.GRG HT.HORT HT.KNT HT.PAIG HT.SIGR HT.SRS HT.THE HU.BUD HU.TRPA MN.BLY MN.PDG MN.TIR MN.VTS RO.BZS RO.CFR SJ.BBLS SJ.FRGS Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +90 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 7.76e+21 dyne-cm Mw = 3.86 Z = 11 km Plane Strike Dip Rake NP1 224 85 170 NP2 315 80 5 Principal Axes: Axis Value Plunge Azimuth T 7.76e+21 11 179 N 0.00e+00 79 18 P -7.76e+21 4 270 Moment Tensor: (dyne-cm) Component Value Mxx 7.50e+21 Mxy -1.16e+20 Mxz -1.40e+21 Myy -7.73e+21 Myz 5.00e+20 Mzz 2.31e+20 ############## ###################### ############################ --##########################-- -------#####################------ ----------#################--------- --------------############------------ -----------------########--------------- -------------------####----------------- ------------------------------------------ ------------------####------------------ P ----------------#######----------------- ---------------##########--------------- --------------##############------------ ------------#################----------- ----------####################-------- -------#######################------ -----#########################---- -############################- ############################ ########## ######### ###### T ##### Global CMT Convention Moment Tensor: R T P 2.31e+20 -1.40e+21 -5.00e+20 -1.40e+21 7.50e+21 1.16e+20 -5.00e+20 1.16e+20 -7.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140624193953/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +90 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 315 80 15 3.60 0.3846 WVFGRD96 2.0 315 75 10 3.68 0.4640 WVFGRD96 3.0 315 75 10 3.71 0.5012 WVFGRD96 4.0 315 75 5 3.73 0.5303 WVFGRD96 5.0 315 85 0 3.75 0.5542 WVFGRD96 6.0 315 85 0 3.77 0.5745 WVFGRD96 7.0 315 85 0 3.79 0.5919 WVFGRD96 8.0 315 80 5 3.82 0.6075 WVFGRD96 9.0 315 80 5 3.83 0.6157 WVFGRD96 10.0 315 80 5 3.85 0.6208 WVFGRD96 11.0 315 80 5 3.86 0.6234 WVFGRD96 12.0 135 90 -5 3.87 0.6196 WVFGRD96 13.0 315 75 5 3.89 0.6233 WVFGRD96 14.0 315 75 5 3.90 0.6222 WVFGRD96 15.0 315 90 -10 3.90 0.6210 WVFGRD96 16.0 315 90 -10 3.91 0.6224 WVFGRD96 17.0 315 90 -10 3.92 0.6224 WVFGRD96 18.0 315 90 -10 3.93 0.6211 WVFGRD96 19.0 315 90 -10 3.94 0.6190 WVFGRD96 20.0 315 90 -5 3.95 0.6157 WVFGRD96 21.0 315 90 -5 3.96 0.6112 WVFGRD96 22.0 315 90 -5 3.97 0.6056 WVFGRD96 23.0 315 90 -5 3.98 0.5987 WVFGRD96 24.0 315 90 -5 3.98 0.5906 WVFGRD96 25.0 315 90 -5 3.99 0.5816 WVFGRD96 26.0 315 90 -5 4.00 0.5716 WVFGRD96 27.0 315 90 -5 4.00 0.5610 WVFGRD96 28.0 315 90 -5 4.01 0.5499 WVFGRD96 29.0 315 90 -5 4.02 0.5382
The best solution is
WVFGRD96 11.0 315 80 5 3.86 0.6234
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +90 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Jun 25 04:01:29 CDT 2014