2014/06/22 01:32:14 44.50 6.69 12 4.1 France
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/06/22 01:32:14:0 44.50 6.69 12.0 4.1 France Stations used: CH.BNALP CH.BRANT CH.DIX CH.FIESA CH.GIMEL CH.GRIMS CH.HASLI CH.LAUCH CH.LLS CH.MMK CH.SENIN CH.TORNY CH.VANNI CH.WIMIS FR.ARBF FR.ARTF FR.BLAF FR.BSTF FR.CALF FR.GRN FR.ISO FR.MLYF FR.MON FR.OG02 FR.OG35 FR.OGAG FR.OGDI FR.OGGM FR.OGMO FR.OGS1 FR.OGS2 FR.OGS3 FR.OGSM FR.RSL FR.RUSF FR.SAOF FR.TRBF FR.TURF G.SSB GU.BHB GU.ENR GU.GBOS GU.PZZ GU.RRL GU.RSP GU.STV GU.TRAV IV.DOI IV.MONC IV.MRGE IV.QLNO MN.BNI RD.ORIF Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.48e+21 dyne-cm Mw = 3.38 Z = 12 km Plane Strike Dip Rake NP1 143 75 -138 NP2 40 50 -20 Principal Axes: Axis Value Plunge Azimuth T 1.48e+21 16 266 N 0.00e+00 46 160 P -1.48e+21 40 10 Moment Tensor: (dyne-cm) Component Value Mxx -8.43e+20 Mxy -6.04e+19 Mxz -7.41e+20 Myy 1.34e+21 Myz -5.07e+20 Mzz -4.98e+20 -------------- ---------------------- ##-------------------------# ###------------- ----------# ######------------ P ----------### #######------------ ----------#### #########------------------------##### ###########-----------------------###### ############----------------------###### ##############--------------------######## ## ###########-----------------######### ## T ############---------------########## ## #############-------------########### ###################----------########### ####################--------############ #####################----############# #################################### ###################----########### #############----------####### #######------------------### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -4.98e+20 -7.41e+20 5.07e+20 -7.41e+20 -8.43e+20 6.04e+19 5.07e+20 6.04e+19 1.34e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140622013214/index.html |
STK = 40 DIP = 50 RAKE = -20 MW = 3.38 HS = 12.0
The NDK file is 20140622013214.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/06/22 01:32:14:0 44.50 6.69 12.0 4.1 France Stations used: CH.BNALP CH.BRANT CH.DIX CH.FIESA CH.GIMEL CH.GRIMS CH.HASLI CH.LAUCH CH.LLS CH.MMK CH.SENIN CH.TORNY CH.VANNI CH.WIMIS FR.ARBF FR.ARTF FR.BLAF FR.BSTF FR.CALF FR.GRN FR.ISO FR.MLYF FR.MON FR.OG02 FR.OG35 FR.OGAG FR.OGDI FR.OGGM FR.OGMO FR.OGS1 FR.OGS2 FR.OGS3 FR.OGSM FR.RSL FR.RUSF FR.SAOF FR.TRBF FR.TURF G.SSB GU.BHB GU.ENR GU.GBOS GU.PZZ GU.RRL GU.RSP GU.STV GU.TRAV IV.DOI IV.MONC IV.MRGE IV.QLNO MN.BNI RD.ORIF Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.48e+21 dyne-cm Mw = 3.38 Z = 12 km Plane Strike Dip Rake NP1 143 75 -138 NP2 40 50 -20 Principal Axes: Axis Value Plunge Azimuth T 1.48e+21 16 266 N 0.00e+00 46 160 P -1.48e+21 40 10 Moment Tensor: (dyne-cm) Component Value Mxx -8.43e+20 Mxy -6.04e+19 Mxz -7.41e+20 Myy 1.34e+21 Myz -5.07e+20 Mzz -4.98e+20 -------------- ---------------------- ##-------------------------# ###------------- ----------# ######------------ P ----------### #######------------ ----------#### #########------------------------##### ###########-----------------------###### ############----------------------###### ##############--------------------######## ## ###########-----------------######### ## T ############---------------########## ## #############-------------########### ###################----------########### ####################--------############ #####################----############# #################################### ###################----########### #############----------####### #######------------------### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -4.98e+20 -7.41e+20 5.07e+20 -7.41e+20 -8.43e+20 6.04e+19 5.07e+20 6.04e+19 1.34e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140622013214/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 40 85 5 2.96 0.2501 WVFGRD96 2.0 65 60 35 3.14 0.3344 WVFGRD96 3.0 55 65 25 3.16 0.3656 WVFGRD96 4.0 40 40 -20 3.25 0.4108 WVFGRD96 5.0 35 40 -25 3.28 0.4574 WVFGRD96 6.0 40 45 -25 3.29 0.4950 WVFGRD96 7.0 35 45 -30 3.31 0.5236 WVFGRD96 8.0 30 40 -35 3.37 0.5495 WVFGRD96 9.0 35 45 -30 3.37 0.5663 WVFGRD96 10.0 35 45 -30 3.38 0.5744 WVFGRD96 11.0 40 50 -25 3.38 0.5770 WVFGRD96 12.0 40 50 -20 3.38 0.5781 WVFGRD96 13.0 40 50 -20 3.39 0.5766 WVFGRD96 14.0 40 50 -15 3.39 0.5735 WVFGRD96 15.0 40 55 -15 3.39 0.5703 WVFGRD96 16.0 40 55 -15 3.40 0.5663 WVFGRD96 17.0 40 55 -15 3.41 0.5614 WVFGRD96 18.0 40 55 -10 3.41 0.5561 WVFGRD96 19.0 40 55 -10 3.42 0.5508 WVFGRD96 20.0 40 55 -10 3.42 0.5446 WVFGRD96 21.0 40 55 -10 3.43 0.5385 WVFGRD96 22.0 40 55 -10 3.44 0.5315 WVFGRD96 23.0 45 55 5 3.44 0.5252 WVFGRD96 24.0 45 55 5 3.44 0.5191 WVFGRD96 25.0 45 55 5 3.45 0.5126 WVFGRD96 26.0 45 55 10 3.45 0.5060 WVFGRD96 27.0 45 55 10 3.46 0.4995 WVFGRD96 28.0 45 55 10 3.46 0.4926 WVFGRD96 29.0 45 60 10 3.46 0.4858
The best solution is
WVFGRD96 12.0 40 50 -20 3.38 0.5781
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Jun 25 05:21:13 CDT 2014