2014/06/12 11:46:48 44.683 6.783 9.5 3.40 France
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2014/06/12 11:46:48:0 44.68 6.78 9.5 3.4 France Stations used: CH.BALST CH.BERGE CH.BNALP CH.BOURR CH.BRANT CH.DIX CH.FUSIO CH.GIMEL CH.LAUCH CH.LLS CH.MMK CH.MTI02 CH.MUO CH.PANIX CH.ROTHE CH.SENIN CH.TORNY CH.VDL CH.WALHA CH.WIMIS FR.ARTF FR.CALF FR.MON FR.SAOF FR.TRBF G.ECH G.SSB GE.WLF GR.BFO GU.BHB GU.ENR GU.FINB GU.LSD GU.PCP GU.PZZ GU.REMY GU.RRL GU.RSP GU.STV IV.BOB IV.DOI IV.IMI IV.MONC IV.MRGE IV.MSSA IV.QLNO MN.BNI Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.38e+21 dyne-cm Mw = 3.36 Z = 8 km Plane Strike Dip Rake NP1 41 81 102 NP2 165 15 35 Principal Axes: Axis Value Plunge Azimuth T 1.38e+21 52 325 N 0.00e+00 12 219 P -1.38e+21 35 120 Moment Tensor: (dyne-cm) Component Value Mxx 1.20e+20 Mxy 1.54e+20 Mxz 8.78e+20 Myy -5.16e+20 Myz -9.45e+20 Mzz 3.96e+20 ############## -##################### --########################## -###########################-- --###########################----- --######### ###############------- --########## T #############---------- ---########## ############------------ --#########################------------- ---#######################---------------- ---######################----------------- ---####################------------------- ---##################--------------------- ---################----------- ------- ---##############------------- P ------- ---###########--------------- ------ ---########------------------------- ---#####-------------------------- ---#-------------------------- ####------------------------ ####------------------ ####---------- Global CMT Convention Moment Tensor: R T P 3.96e+20 8.78e+20 9.45e+20 8.78e+20 1.20e+20 -1.54e+20 9.45e+20 -1.54e+20 -5.16e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20140612114648/index.html |
STK = 165 DIP = 15 RAKE = 35 MW = 3.36 HS = 8.0
The NDK file is 20140612114648.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2014/06/12 11:46:48:0 44.68 6.78 9.5 3.4 France Stations used: CH.BALST CH.BERGE CH.BNALP CH.BOURR CH.BRANT CH.DIX CH.FUSIO CH.GIMEL CH.LAUCH CH.LLS CH.MMK CH.MTI02 CH.MUO CH.PANIX CH.ROTHE CH.SENIN CH.TORNY CH.VDL CH.WALHA CH.WIMIS FR.ARTF FR.CALF FR.MON FR.SAOF FR.TRBF G.ECH G.SSB GE.WLF GR.BFO GU.BHB GU.ENR GU.FINB GU.LSD GU.PCP GU.PZZ GU.REMY GU.RRL GU.RSP GU.STV IV.BOB IV.DOI IV.IMI IV.MONC IV.MRGE IV.MSSA IV.QLNO MN.BNI Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.38e+21 dyne-cm Mw = 3.36 Z = 8 km Plane Strike Dip Rake NP1 41 81 102 NP2 165 15 35 Principal Axes: Axis Value Plunge Azimuth T 1.38e+21 52 325 N 0.00e+00 12 219 P -1.38e+21 35 120 Moment Tensor: (dyne-cm) Component Value Mxx 1.20e+20 Mxy 1.54e+20 Mxz 8.78e+20 Myy -5.16e+20 Myz -9.45e+20 Mzz 3.96e+20 ############## -##################### --########################## -###########################-- --###########################----- --######### ###############------- --########## T #############---------- ---########## ############------------ --#########################------------- ---#######################---------------- ---######################----------------- ---####################------------------- ---##################--------------------- ---################----------- ------- ---##############------------- P ------- ---###########--------------- ------ ---########------------------------- ---#####-------------------------- ---#-------------------------- ####------------------------ ####------------------ ####---------- Global CMT Convention Moment Tensor: R T P 3.96e+20 8.78e+20 9.45e+20 8.78e+20 1.20e+20 -1.54e+20 9.45e+20 -1.54e+20 -5.16e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20140612114648/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 225 35 -90 3.21 0.4474 WVFGRD96 2.0 220 25 -95 3.29 0.4065 WVFGRD96 3.0 105 5 -25 3.30 0.4890 WVFGRD96 4.0 130 10 0 3.27 0.5664 WVFGRD96 5.0 135 5 5 3.39 0.6260 WVFGRD96 6.0 150 10 20 3.39 0.6778 WVFGRD96 7.0 155 10 25 3.40 0.7064 WVFGRD96 8.0 165 15 35 3.36 0.7183 WVFGRD96 9.0 165 15 35 3.37 0.7180 WVFGRD96 10.0 160 20 30 3.38 0.7099 WVFGRD96 11.0 155 20 25 3.39 0.6960 WVFGRD96 12.0 155 20 25 3.40 0.6786 WVFGRD96 13.0 155 20 25 3.40 0.6588 WVFGRD96 14.0 155 20 25 3.41 0.6388 WVFGRD96 15.0 155 20 20 3.45 0.6190 WVFGRD96 16.0 150 20 15 3.46 0.5966 WVFGRD96 17.0 150 20 15 3.47 0.5736 WVFGRD96 18.0 145 20 10 3.48 0.5505 WVFGRD96 19.0 145 20 10 3.48 0.5270 WVFGRD96 20.0 145 20 10 3.49 0.5038 WVFGRD96 21.0 145 20 10 3.50 0.4799 WVFGRD96 22.0 145 20 10 3.50 0.4561 WVFGRD96 23.0 145 20 10 3.51 0.4332 WVFGRD96 24.0 140 20 5 3.51 0.4118 WVFGRD96 25.0 140 20 5 3.51 0.3934 WVFGRD96 26.0 140 20 5 3.52 0.3780 WVFGRD96 27.0 150 20 15 3.52 0.3673 WVFGRD96 28.0 160 20 25 3.52 0.3600 WVFGRD96 29.0 165 25 35 3.53 0.3565
The best solution is
WVFGRD96 8.0 165 15 35 3.36 0.7183
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Jun 12 08:40:42 CDT 2014