2014/05/31 10:37:20 50.18 12.41 10 4.5 Czech Republic
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/05/31 10:37:20:9 50.18 12.41 10.0 4.5 Czech Republic Stations used: CH.BALST CH.BERNI CH.BNALP CH.BOURR CH.BRANT CH.DAVOX CH.DIX CH.EMBD CH.FIESA CH.FUORN CH.FUSIO CH.GIMEL CH.HASLI CH.LAUCH CH.LIENZ CH.LLS CH.MMK CH.MUGIO CH.MUO CH.PANIX CH.PLONS CH.SENIN CH.SIMPL CH.SLE CH.TORNY CH.VANNI CH.VDL CH.WILA CH.WIMIS CH.ZUR CZ.JAVC CZ.KHC CZ.OKC CZ.PRU CZ.PVCC CZ.TREC G.ECH GE.FLT1 GE.IBBN GE.MORC GE.PSZ GE.RUE GE.WLF GR.AHRW GR.ASSE GR.BRG GR.BUG GR.CLL GR.CLNZ GR.CLZ GR.FUR GR.GEC2 GR.GOLD GR.GRA3 GR.GRB3 GR.GRB5 GR.GRC1 GR.GRC3 GR.GRC4 GR.GTTG GR.KAST GR.MOX GR.NRDL GR.TMO22 GR.TNS GR.UBBA GR.UBR GR.WET GR.ZARR GU.CIRO GU.LSD GU.REMY HU.BEHE HU.MORH HU.SOP II.BFO IV.BRMO IV.ROVR PL.BEL PL.KSP PL.NIE PL.OJC SX.MULD SX.TRIB SX.WIMM TH.ABG1 TH.BBWF TH.CRUX TH.GRZ1 TH.HKWD TH.HWTS TH.LEIB1 TH.MLFH TH.MODW TH.PLN TH.POSS TH.ZEITZ TH.ZEU Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 14 km Plane Strike Dip Rake NP1 35 60 45 NP2 278 52 141 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 52 251 N 0.00e+00 38 62 P -5.89e+21 5 155 Moment Tensor: (dyne-cm) Component Value Mxx -4.57e+21 Mxy 2.93e+21 Mxz -5.11e+20 Myy 9.69e+20 Myz -2.90e+21 Mzz 3.61e+21 -------------- ---------------------- --------------------------## ---------------------------### -----------------------------##### ------------------------------###### -------##################------####### ----#################################### -##############################---###### ###############################------##### ##############################---------### ########### ###############-----------## ########### T ##############-------------# ########## #############-------------- #########################--------------- ######################---------------- ###################----------------- ################------------------ ############------------------ #######-------------- ---- ------------------ P - -------------- Global CMT Convention Moment Tensor: R T P 3.61e+21 -5.11e+20 2.90e+21 -5.11e+20 -4.57e+21 -2.93e+21 2.90e+21 -2.93e+21 9.69e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140531103720/index.html |
STK = 35 DIP = 60 RAKE = 45 MW = 3.78 HS = 14.0
The NDK file is 20140531103720.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/05/31 10:37:20:9 50.18 12.41 10.0 4.5 Czech Republic Stations used: CH.BALST CH.BERNI CH.BNALP CH.BOURR CH.BRANT CH.DAVOX CH.DIX CH.EMBD CH.FIESA CH.FUORN CH.FUSIO CH.GIMEL CH.HASLI CH.LAUCH CH.LIENZ CH.LLS CH.MMK CH.MUGIO CH.MUO CH.PANIX CH.PLONS CH.SENIN CH.SIMPL CH.SLE CH.TORNY CH.VANNI CH.VDL CH.WILA CH.WIMIS CH.ZUR CZ.JAVC CZ.KHC CZ.OKC CZ.PRU CZ.PVCC CZ.TREC G.ECH GE.FLT1 GE.IBBN GE.MORC GE.PSZ GE.RUE GE.WLF GR.AHRW GR.ASSE GR.BRG GR.BUG GR.CLL GR.CLNZ GR.CLZ GR.FUR GR.GEC2 GR.GOLD GR.GRA3 GR.GRB3 GR.GRB5 GR.GRC1 GR.GRC3 GR.GRC4 GR.GTTG GR.KAST GR.MOX GR.NRDL GR.TMO22 GR.TNS GR.UBBA GR.UBR GR.WET GR.ZARR GU.CIRO GU.LSD GU.REMY HU.BEHE HU.MORH HU.SOP II.BFO IV.BRMO IV.ROVR PL.BEL PL.KSP PL.NIE PL.OJC SX.MULD SX.TRIB SX.WIMM TH.ABG1 TH.BBWF TH.CRUX TH.GRZ1 TH.HKWD TH.HWTS TH.LEIB1 TH.MLFH TH.MODW TH.PLN TH.POSS TH.ZEITZ TH.ZEU Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 14 km Plane Strike Dip Rake NP1 35 60 45 NP2 278 52 141 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 52 251 N 0.00e+00 38 62 P -5.89e+21 5 155 Moment Tensor: (dyne-cm) Component Value Mxx -4.57e+21 Mxy 2.93e+21 Mxz -5.11e+20 Myy 9.69e+20 Myz -2.90e+21 Mzz 3.61e+21 -------------- ---------------------- --------------------------## ---------------------------### -----------------------------##### ------------------------------###### -------##################------####### ----#################################### -##############################---###### ###############################------##### ##############################---------### ########### ###############-----------## ########### T ##############-------------# ########## #############-------------- #########################--------------- ######################---------------- ###################----------------- ################------------------ ############------------------ #######-------------- ---- ------------------ P - -------------- Global CMT Convention Moment Tensor: R T P 3.61e+21 -5.11e+20 2.90e+21 -5.11e+20 -4.57e+21 -2.93e+21 2.90e+21 -2.93e+21 9.69e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140531103720/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 15 90 -5 3.41 0.3316 WVFGRD96 2.0 10 75 -15 3.52 0.3731 WVFGRD96 3.0 190 65 -35 3.60 0.3789 WVFGRD96 4.0 185 55 -35 3.63 0.4013 WVFGRD96 5.0 190 75 -60 3.67 0.4300 WVFGRD96 6.0 185 70 -60 3.69 0.4610 WVFGRD96 7.0 180 65 -65 3.70 0.4832 WVFGRD96 8.0 175 65 -70 3.78 0.5032 WVFGRD96 9.0 170 60 -75 3.79 0.5147 WVFGRD96 10.0 35 60 50 3.74 0.5341 WVFGRD96 11.0 35 60 45 3.76 0.5633 WVFGRD96 12.0 35 60 45 3.77 0.5812 WVFGRD96 13.0 35 60 45 3.77 0.5903 WVFGRD96 14.0 35 60 45 3.78 0.5921 WVFGRD96 15.0 35 60 40 3.78 0.5888 WVFGRD96 16.0 35 60 40 3.79 0.5820 WVFGRD96 17.0 30 65 35 3.80 0.5740 WVFGRD96 18.0 35 65 35 3.80 0.5642 WVFGRD96 19.0 35 65 35 3.80 0.5525 WVFGRD96 20.0 30 70 30 3.81 0.5400 WVFGRD96 21.0 30 70 35 3.81 0.5277 WVFGRD96 22.0 30 70 30 3.82 0.5132 WVFGRD96 23.0 30 70 30 3.83 0.4982 WVFGRD96 24.0 30 70 30 3.83 0.4826 WVFGRD96 25.0 30 70 30 3.83 0.4667 WVFGRD96 26.0 25 75 30 3.84 0.4515 WVFGRD96 27.0 30 75 30 3.84 0.4368 WVFGRD96 28.0 25 75 25 3.85 0.4233 WVFGRD96 29.0 25 75 25 3.85 0.4121
The best solution is
WVFGRD96 14.0 35 60 45 3.78 0.5921
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat May 31 15:44:14 CDT 2014