2014/04/29 07:03:24 43.04 -0.02 5.0 4.3 France
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/29 07:03:24:0 43.04 -0.02 5.0 4.3 France Stations used: CA.FBR CH.BRANT CH.GIMEL FR.ATE FR.CALF FR.FILF FR.FNEB FR.ISO FR.MONQ FR.RENF FR.RUSF FR.SJAF FR.TERF FR.TRBF G.SSB GU.BHB GU.PZZ GU.RSP GU.STV IV.DOI MN.BNI RD.LOR RD.MTLF RD.ROSF Filtering commands used: cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.06e+22 dyne-cm Mw = 3.95 Z = 12 km Plane Strike Dip Rake NP1 240 80 35 NP2 143 56 168 Principal Axes: Axis Value Plunge Azimuth T 1.06e+22 31 107 N 0.00e+00 54 254 P -1.06e+22 16 7 Moment Tensor: (dyne-cm) Component Value Mxx -8.96e+21 Mxy -3.37e+21 Mxz -4.19e+21 Myy 6.88e+21 Myz 4.16e+21 Mzz 2.08e+21 -------- --- ------------ P ------- #-------------- ---------- ##---------------------------- ####------------------------------ #####------------------------------# ######------------------------######## #######--------------------############# ########---------------################# ##########-----------##################### ##########--------######################## ###########----########################### ################################# ###### ########-----################### T ##### ######--------################## ##### ###------------####################### ----------------#################### -----------------################# ------------------############ ---------------------####### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.08e+21 -4.19e+21 -4.16e+21 -4.19e+21 -8.96e+21 3.37e+21 -4.16e+21 3.37e+21 6.88e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140429070324/index.html |
STK = 240 DIP = 80 RAKE = 35 MW = 3.95 HS = 12.0
The NDK file is 20140429070324.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/29 07:03:24:0 43.04 -0.02 5.0 4.3 France Stations used: CA.FBR CH.BRANT CH.GIMEL FR.ATE FR.CALF FR.FILF FR.FNEB FR.ISO FR.MONQ FR.RENF FR.RUSF FR.SJAF FR.TERF FR.TRBF G.SSB GU.BHB GU.PZZ GU.RSP GU.STV IV.DOI MN.BNI RD.LOR RD.MTLF RD.ROSF Filtering commands used: cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.06e+22 dyne-cm Mw = 3.95 Z = 12 km Plane Strike Dip Rake NP1 240 80 35 NP2 143 56 168 Principal Axes: Axis Value Plunge Azimuth T 1.06e+22 31 107 N 0.00e+00 54 254 P -1.06e+22 16 7 Moment Tensor: (dyne-cm) Component Value Mxx -8.96e+21 Mxy -3.37e+21 Mxz -4.19e+21 Myy 6.88e+21 Myz 4.16e+21 Mzz 2.08e+21 -------- --- ------------ P ------- #-------------- ---------- ##---------------------------- ####------------------------------ #####------------------------------# ######------------------------######## #######--------------------############# ########---------------################# ##########-----------##################### ##########--------######################## ###########----########################### ################################# ###### ########-----################### T ##### ######--------################## ##### ###------------####################### ----------------#################### -----------------################# ------------------############ ---------------------####### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.08e+21 -4.19e+21 -4.16e+21 -4.19e+21 -8.96e+21 3.37e+21 -4.16e+21 3.37e+21 6.88e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140429070324/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 245 85 -10 3.60 0.2933 WVFGRD96 2.0 270 45 -90 3.84 0.3433 WVFGRD96 3.0 65 80 5 3.73 0.3431 WVFGRD96 4.0 60 90 -45 3.82 0.3540 WVFGRD96 5.0 245 80 45 3.85 0.3933 WVFGRD96 6.0 245 80 45 3.87 0.4221 WVFGRD96 7.0 240 85 40 3.87 0.4449 WVFGRD96 8.0 245 75 45 3.93 0.4667 WVFGRD96 9.0 245 75 45 3.94 0.4815 WVFGRD96 10.0 240 80 40 3.94 0.4892 WVFGRD96 11.0 240 80 35 3.95 0.4938 WVFGRD96 12.0 240 80 35 3.95 0.4960 WVFGRD96 13.0 240 80 35 3.96 0.4951 WVFGRD96 14.0 240 80 35 3.97 0.4928 WVFGRD96 15.0 240 80 35 3.97 0.4894 WVFGRD96 16.0 240 80 35 3.98 0.4846 WVFGRD96 17.0 240 80 35 3.99 0.4786 WVFGRD96 18.0 240 80 35 3.99 0.4734 WVFGRD96 19.0 145 65 -5 4.01 0.4727 WVFGRD96 20.0 145 65 -5 4.02 0.4692 WVFGRD96 21.0 145 65 -5 4.03 0.4648 WVFGRD96 22.0 145 65 -10 4.04 0.4583 WVFGRD96 23.0 145 65 -10 4.04 0.4526 WVFGRD96 24.0 145 65 -10 4.05 0.4445 WVFGRD96 25.0 145 65 -10 4.06 0.4352 WVFGRD96 26.0 145 65 -10 4.06 0.4258 WVFGRD96 27.0 145 65 -10 4.07 0.4148 WVFGRD96 28.0 330 65 -5 4.07 0.4002 WVFGRD96 29.0 330 65 -5 4.07 0.3901
The best solution is
WVFGRD96 12.0 240 80 35 3.95 0.4960
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Apr 29 10:07:04 CDT 2014