2014/03/08 17:32:50 41.51 19.42 10.0 4.0 Albania
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/08 17:32:50:0 41.51 19.42 10.0 4.0 Albania Stations used: HT.ALN HT.GRG HT.KNT HT.LIT HT.SRS HT.THE MN.PDG MN.TIR SJ.BBLS Filtering commands used: cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.76e+21 dyne-cm Mw = 3.82 Z = 27 km Plane Strike Dip Rake NP1 145 60 85 NP2 335 30 99 Principal Axes: Axis Value Plunge Azimuth T 6.76e+21 74 42 N 0.00e+00 4 147 P -6.76e+21 15 239 Moment Tensor: (dyne-cm) Component Value Mxx -1.44e+21 Mxy -2.57e+21 Mxz 2.17e+21 Myy -4.39e+21 Myz 2.59e+21 Mzz 5.83e+21 -------------- ############---------- --#################--------- ---###################-------- -----#####################-------- ------#######################------- -------########################------- ---------########################------- ---------############ ##########------ -----------########### T ###########------ ------------########## ###########------ -------------#######################------ --------------######################------ --------------#####################----- --- ---------####################----- -- P -----------##################---- - -------------###############---- ------------------#############--- ------------------##########-- ---------------------#####-- ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 5.83e+21 2.17e+21 -2.59e+21 2.17e+21 -1.44e+21 2.57e+21 -2.59e+21 2.57e+21 -4.39e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140308173250/index.html |
STK = 145 DIP = 60 RAKE = 85 MW = 3.82 HS = 27.0
The NDK file is 20140308173250.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/08 17:32:50:0 41.51 19.42 10.0 4.0 Albania Stations used: HT.ALN HT.GRG HT.KNT HT.LIT HT.SRS HT.THE MN.PDG MN.TIR SJ.BBLS Filtering commands used: cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.76e+21 dyne-cm Mw = 3.82 Z = 27 km Plane Strike Dip Rake NP1 145 60 85 NP2 335 30 99 Principal Axes: Axis Value Plunge Azimuth T 6.76e+21 74 42 N 0.00e+00 4 147 P -6.76e+21 15 239 Moment Tensor: (dyne-cm) Component Value Mxx -1.44e+21 Mxy -2.57e+21 Mxz 2.17e+21 Myy -4.39e+21 Myz 2.59e+21 Mzz 5.83e+21 -------------- ############---------- --#################--------- ---###################-------- -----#####################-------- ------#######################------- -------########################------- ---------########################------- ---------############ ##########------ -----------########### T ###########------ ------------########## ###########------ -------------#######################------ --------------######################------ --------------#####################----- --- ---------####################----- -- P -----------##################---- - -------------###############---- ------------------#############--- ------------------##########-- ---------------------#####-- ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 5.83e+21 2.17e+21 -2.59e+21 2.17e+21 -1.44e+21 2.57e+21 -2.59e+21 2.57e+21 -4.39e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140308173250/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 50 90 10 3.28 0.1310 WVFGRD96 2.0 225 75 -25 3.42 0.1774 WVFGRD96 3.0 50 90 5 3.46 0.2010 WVFGRD96 4.0 50 85 0 3.50 0.2128 WVFGRD96 5.0 50 90 0 3.53 0.2153 WVFGRD96 6.0 230 90 5 3.55 0.2142 WVFGRD96 7.0 50 85 -5 3.57 0.2140 WVFGRD96 8.0 50 90 -15 3.61 0.2154 WVFGRD96 9.0 230 90 20 3.63 0.2158 WVFGRD96 10.0 50 90 -20 3.64 0.2163 WVFGRD96 11.0 10 65 -50 3.62 0.2244 WVFGRD96 12.0 10 60 -50 3.65 0.2299 WVFGRD96 13.0 10 60 -50 3.65 0.2342 WVFGRD96 14.0 10 60 -50 3.66 0.2377 WVFGRD96 15.0 240 60 45 3.73 0.2404 WVFGRD96 16.0 240 55 40 3.76 0.2476 WVFGRD96 17.0 240 55 40 3.77 0.2534 WVFGRD96 18.0 240 55 40 3.78 0.2585 WVFGRD96 19.0 240 55 40 3.79 0.2628 WVFGRD96 20.0 240 55 40 3.80 0.2664 WVFGRD96 21.0 240 60 45 3.79 0.2682 WVFGRD96 22.0 240 60 45 3.80 0.2705 WVFGRD96 23.0 140 60 75 3.79 0.2721 WVFGRD96 24.0 145 60 80 3.80 0.2742 WVFGRD96 25.0 145 60 85 3.81 0.2766 WVFGRD96 26.0 335 30 100 3.82 0.2777 WVFGRD96 27.0 145 60 85 3.82 0.2784 WVFGRD96 28.0 145 75 100 3.86 0.2781 WVFGRD96 29.0 145 75 100 3.87 0.2781 WVFGRD96 30.0 145 75 100 3.87 0.2774 WVFGRD96 31.0 290 20 55 3.88 0.2758 WVFGRD96 32.0 300 20 65 3.87 0.2730 WVFGRD96 33.0 300 20 65 3.88 0.2700 WVFGRD96 34.0 285 20 50 3.88 0.2672 WVFGRD96 35.0 275 20 40 3.88 0.2635 WVFGRD96 36.0 135 60 85 3.85 0.2620 WVFGRD96 37.0 320 30 95 3.86 0.2595 WVFGRD96 38.0 305 30 85 3.89 0.2566 WVFGRD96 39.0 305 30 85 3.89 0.2541 WVFGRD96 40.0 245 20 15 4.04 0.2455 WVFGRD96 41.0 245 20 15 4.05 0.2431 WVFGRD96 42.0 245 20 15 4.05 0.2399 WVFGRD96 43.0 250 20 15 4.03 0.2370 WVFGRD96 44.0 250 20 15 4.04 0.2341 WVFGRD96 45.0 125 65 95 4.02 0.2326 WVFGRD96 46.0 300 25 85 4.01 0.2305 WVFGRD96 47.0 130 65 90 4.00 0.2280 WVFGRD96 48.0 130 65 90 4.00 0.2259 WVFGRD96 49.0 130 65 90 4.00 0.2234
The best solution is
WVFGRD96 27.0 145 60 85 3.82 0.2784
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Mar 8 18:01:14 CST 2014