2014/03/08 15:06:32 41.51 19.44 10.0 4.3 Albania
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/08 15:06:32:0 41.51 19.44 10.0 4.3 Albania Stations used: BS.PLD HT.AGG HT.ALN HT.GRG HT.HORT HT.KNT HT.LIT HT.LKD2 HT.PAIG HT.SRS MN.TIR RO.ARR RO.BZS RO.VOIR SJ.BBLS SJ.FRGS Filtering commands used: cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.22e+22 dyne-cm Mw = 3.99 Z = 29 km Plane Strike Dip Rake NP1 155 70 60 NP2 34 36 144 Principal Axes: Axis Value Plunge Azimuth T 1.22e+22 55 27 N 0.00e+00 28 166 P -1.22e+22 19 267 Moment Tensor: (dyne-cm) Component Value Mxx 3.17e+21 Mxy 1.08e+21 Mxz 5.29e+21 Myy -9.94e+21 Myz 6.43e+21 Mzz 6.77e+21 ############## --#################### -----######################- ------#######################- --------#######################--- ---------############ #########--- -----------########### T #########---- ------------########### #########----- -------------######################----- --------------######################------ --- ---------#####################------ --- P ----------###################------- --- -----------##################------- -----------------################------- ------------------##############-------- ------------------############-------- ------------------#########--------- ------------------######---------- ------------------##---------- ----------------###--------- #-----############---- ############## Global CMT Convention Moment Tensor: R T P 6.77e+21 5.29e+21 -6.43e+21 5.29e+21 3.17e+21 -1.08e+21 -6.43e+21 -1.08e+21 -9.94e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140308150632/index.html |
STK = 155 DIP = 70 RAKE = 60 MW = 3.99 HS = 29.0
The NDK file is 20140308150632.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/08 15:06:32:0 41.51 19.44 10.0 4.3 Albania Stations used: BS.PLD HT.AGG HT.ALN HT.GRG HT.HORT HT.KNT HT.LIT HT.LKD2 HT.PAIG HT.SRS MN.TIR RO.ARR RO.BZS RO.VOIR SJ.BBLS SJ.FRGS Filtering commands used: cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.22e+22 dyne-cm Mw = 3.99 Z = 29 km Plane Strike Dip Rake NP1 155 70 60 NP2 34 36 144 Principal Axes: Axis Value Plunge Azimuth T 1.22e+22 55 27 N 0.00e+00 28 166 P -1.22e+22 19 267 Moment Tensor: (dyne-cm) Component Value Mxx 3.17e+21 Mxy 1.08e+21 Mxz 5.29e+21 Myy -9.94e+21 Myz 6.43e+21 Mzz 6.77e+21 ############## --#################### -----######################- ------#######################- --------#######################--- ---------############ #########--- -----------########### T #########---- ------------########### #########----- -------------######################----- --------------######################------ --- ---------#####################------ --- P ----------###################------- --- -----------##################------- -----------------################------- ------------------##############-------- ------------------############-------- ------------------#########--------- ------------------######---------- ------------------##---------- ----------------###--------- #-----############---- ############## Global CMT Convention Moment Tensor: R T P 6.77e+21 5.29e+21 -6.43e+21 5.29e+21 3.17e+21 -1.08e+21 -6.43e+21 -1.08e+21 -9.94e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140308150632/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 330 80 -10 3.53 0.2710 WVFGRD96 2.0 330 80 -10 3.63 0.3508 WVFGRD96 3.0 150 90 10 3.68 0.3993 WVFGRD96 4.0 150 90 5 3.72 0.4199 WVFGRD96 5.0 330 90 -5 3.74 0.4203 WVFGRD96 6.0 145 90 5 3.75 0.4189 WVFGRD96 7.0 145 85 5 3.78 0.4213 WVFGRD96 8.0 145 80 0 3.81 0.4299 WVFGRD96 9.0 310 75 -55 3.87 0.4294 WVFGRD96 10.0 310 75 -55 3.88 0.4587 WVFGRD96 11.0 310 75 -55 3.89 0.4818 WVFGRD96 12.0 305 70 -55 3.90 0.5012 WVFGRD96 13.0 305 70 -50 3.89 0.5194 WVFGRD96 14.0 140 85 70 3.92 0.5326 WVFGRD96 15.0 140 85 65 3.92 0.5480 WVFGRD96 16.0 140 80 70 3.94 0.5606 WVFGRD96 17.0 145 75 75 3.93 0.5719 WVFGRD96 18.0 145 75 75 3.94 0.5828 WVFGRD96 19.0 300 45 30 3.90 0.5945 WVFGRD96 20.0 300 45 30 3.91 0.6033 WVFGRD96 21.0 150 65 55 3.96 0.6179 WVFGRD96 22.0 150 65 55 3.96 0.6247 WVFGRD96 23.0 155 65 50 3.96 0.6325 WVFGRD96 24.0 155 65 55 3.97 0.6385 WVFGRD96 25.0 155 65 60 3.97 0.6425 WVFGRD96 26.0 155 65 60 3.98 0.6450 WVFGRD96 27.0 155 70 55 3.98 0.6455 WVFGRD96 28.0 155 70 60 3.99 0.6481 WVFGRD96 29.0 155 70 60 3.99 0.6493 WVFGRD96 30.0 155 70 60 4.00 0.6474 WVFGRD96 31.0 160 70 65 4.00 0.6439 WVFGRD96 32.0 160 70 65 4.00 0.6413 WVFGRD96 33.0 160 70 65 4.01 0.6369 WVFGRD96 34.0 160 70 65 4.02 0.6296 WVFGRD96 35.0 165 70 70 4.01 0.6214 WVFGRD96 36.0 165 70 75 4.02 0.6137 WVFGRD96 37.0 165 70 75 4.02 0.6062 WVFGRD96 38.0 260 15 20 4.05 0.5954 WVFGRD96 39.0 260 15 20 4.04 0.5909 WVFGRD96 40.0 255 10 15 4.19 0.5865 WVFGRD96 41.0 250 10 10 4.20 0.5808 WVFGRD96 42.0 245 10 5 4.20 0.5747 WVFGRD96 43.0 245 10 5 4.20 0.5690 WVFGRD96 44.0 245 10 5 4.21 0.5629 WVFGRD96 45.0 240 10 0 4.21 0.5568 WVFGRD96 46.0 235 10 -5 4.21 0.5512 WVFGRD96 47.0 235 10 -5 4.22 0.5447 WVFGRD96 48.0 230 10 -10 4.22 0.5395 WVFGRD96 49.0 230 10 -10 4.22 0.5332
The best solution is
WVFGRD96 29.0 155 70 60 3.99 0.6493
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Mar 8 18:02:07 CST 2014