2013/12/12 00:59:19 47.06 9.49 3.0 4.1 Liechtenstein
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/12/12 00:59:19:0 47.06 9.49 3.0 4.1 Liechtenstein Stations used: CH.BALST CH.BERNI CH.BNALP CH.BOURR CH.BRANT CH.DAVOX CH.FUSIO CH.HASLI CH.LAUCH CH.LIENZ CH.LLS CH.MMK CH.MUO CH.PANIX CH.SENIN CH.SLE CH.SULZ CH.VDL CH.WILA CH.WIMIS CH.ZUR GU.SATI IV.STAL MN.TUE OE.ABTA OE.DAVA OE.FETA OE.KBA OE.MYKA OE.RETA OE.WTTA SL.CADS SL.CRNS SL.GBAS SL.GORS SL.JAVS SL.MOZS SL.ROBS SL.VOJS Filtering commands used: cut a -20 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.63e+21 dyne-cm Mw = 3.64 Z = 10 km Plane Strike Dip Rake NP1 180 85 25 NP2 88 65 174 Principal Axes: Axis Value Plunge Azimuth T 3.63e+21 21 47 N 0.00e+00 65 191 P -3.63e+21 14 311 Moment Tensor: (dyne-cm) Component Value Mxx -5.73e+14 Mxy 3.28e+21 Mxz 2.87e+20 Myy -2.66e+20 Myz 1.51e+21 Mzz 2.66e+20 -------####### -----------########### -------------############### -----------########### ## -- P -----------########### T #### --- -----------########### ##### ------------------#################### -------------------##################### -------------------##################### --------------------###################### --------------------###################### --------------------####################-- ###-----------------#################----- ######-------------############--------- ###################--------------------- ##################-------------------- #################------------------- ################------------------ ##############---------------- #############--------------- ###########----------- #######------- Global CMT Convention Moment Tensor: R T P 2.66e+20 2.87e+20 -1.51e+21 2.87e+20 -5.73e+14 -3.28e+21 -1.51e+21 -3.28e+21 -2.66e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20131212005919/index.html |
STK = 180 DIP = 85 RAKE = 25 MW = 3.64 HS = 10.0
The NDK file is 20131212005919.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/12/12 00:59:19:0 47.06 9.49 3.0 4.1 Liechtenstein Stations used: CH.BALST CH.BERNI CH.BNALP CH.BOURR CH.BRANT CH.DAVOX CH.FUSIO CH.HASLI CH.LAUCH CH.LIENZ CH.LLS CH.MMK CH.MUO CH.PANIX CH.SENIN CH.SLE CH.SULZ CH.VDL CH.WILA CH.WIMIS CH.ZUR GU.SATI IV.STAL MN.TUE OE.ABTA OE.DAVA OE.FETA OE.KBA OE.MYKA OE.RETA OE.WTTA SL.CADS SL.CRNS SL.GBAS SL.GORS SL.JAVS SL.MOZS SL.ROBS SL.VOJS Filtering commands used: cut a -20 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.63e+21 dyne-cm Mw = 3.64 Z = 10 km Plane Strike Dip Rake NP1 180 85 25 NP2 88 65 174 Principal Axes: Axis Value Plunge Azimuth T 3.63e+21 21 47 N 0.00e+00 65 191 P -3.63e+21 14 311 Moment Tensor: (dyne-cm) Component Value Mxx -5.73e+14 Mxy 3.28e+21 Mxz 2.87e+20 Myy -2.66e+20 Myz 1.51e+21 Mzz 2.66e+20 -------####### -----------########### -------------############### -----------########### ## -- P -----------########### T #### --- -----------########### ##### ------------------#################### -------------------##################### -------------------##################### --------------------###################### --------------------###################### --------------------####################-- ###-----------------#################----- ######-------------############--------- ###################--------------------- ##################-------------------- #################------------------- ################------------------ ##############---------------- #############--------------- ###########----------- #######------- Global CMT Convention Moment Tensor: R T P 2.66e+20 2.87e+20 -1.51e+21 2.87e+20 -5.73e+14 -3.28e+21 -1.51e+21 -3.28e+21 -2.66e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20131212005919/index.html |
GFZ Event gfz2013ygkm 13/12/12 00:59:19.26 Germany Epicenter: 47.16 9.54 MW 3.6 GFZ MOMENT TENSOR SOLUTION Depth 5 No. of sta: 49 Moment Tensor; Scale 10**14 Nm Mrr=-0.72 Mtt= 0.33 Mpp= 0.39 Mrt= 0.50 Mrp=-0.46 Mtp=-3.12 Principal axes: T Val= 3.59 Plg= 9 Azm= 45 N -0.83 81 232 P -2.76 1 135 Best Double Couple:Mo=3.3*10**14 NP1:Strike= 90 Dip=84 Slip= 173 NP2: 181 83 6 ------##### --------######### -----------############ ------------############# --------------############### -------------################ --------------################# ---------------################## ---------------################## ---------------################## ###############------------------ ###############------------------ ##############----------------- #############---------------- #############---------------- ############------------- ###########------------ ########--------- #####------ |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -20 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 180 70 -20 3.30 0.3238 WVFGRD96 1.0 5 85 -5 3.31 0.3466 WVFGRD96 2.0 0 80 -20 3.42 0.4426 WVFGRD96 3.0 0 85 -30 3.49 0.4820 WVFGRD96 4.0 0 90 -35 3.53 0.5173 WVFGRD96 5.0 0 90 -30 3.55 0.5472 WVFGRD96 6.0 0 90 -30 3.57 0.5708 WVFGRD96 7.0 0 90 -25 3.58 0.5897 WVFGRD96 8.0 0 90 -30 3.62 0.6036 WVFGRD96 9.0 0 90 -30 3.63 0.6088 WVFGRD96 10.0 180 85 25 3.64 0.6127 WVFGRD96 11.0 180 85 25 3.65 0.6101 WVFGRD96 12.0 180 85 20 3.66 0.6046 WVFGRD96 13.0 180 85 20 3.67 0.5990 WVFGRD96 14.0 180 85 20 3.67 0.5915 WVFGRD96 15.0 0 90 -20 3.68 0.5813 WVFGRD96 16.0 0 90 -20 3.68 0.5732 WVFGRD96 17.0 180 90 20 3.69 0.5638 WVFGRD96 18.0 0 90 -15 3.69 0.5546 WVFGRD96 19.0 0 90 -15 3.70 0.5451 WVFGRD96 20.0 180 90 15 3.70 0.5357 WVFGRD96 21.0 180 90 15 3.71 0.5264 WVFGRD96 22.0 0 90 -15 3.71 0.5176 WVFGRD96 23.0 -5 75 -15 3.72 0.5084 WVFGRD96 24.0 0 60 0 3.75 0.5018 WVFGRD96 25.0 0 60 0 3.75 0.4967 WVFGRD96 26.0 0 60 0 3.76 0.4915 WVFGRD96 27.0 0 60 0 3.76 0.4857 WVFGRD96 28.0 0 60 0 3.77 0.4809 WVFGRD96 29.0 0 60 0 3.77 0.4758
The best solution is
WVFGRD96 10.0 180 85 25 3.64 0.6127
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -20 a 140 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Dec 12 14:29:53 CST 2013