2013/07/02 19:07:33 48.00 19.25 10.0 3.60 Hungary
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/07/02 19:07:33:0 48.00 19.25 10.0 3.6 Hungary Stations used: CZ.DPC CZ.JAVC CZ.KRUC GE.MORC GE.PSZ HU.BUD HU.MORH HU.SOP HU.TRPA IV.STAL MN.BLY MN.TRI OE.ABTA OE.ARSA OE.CONA OE.CSNA OE.KBA OE.MYKA OE.OBKA OE.SOKA PL.KSP PL.NIE PL.OJC RO.BZS SJ.BBLS Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.16e+21 dyne-cm Mw = 3.60 Z = 5 km Plane Strike Dip Rake NP1 260 80 -15 NP2 353 75 -170 Principal Axes: Axis Value Plunge Azimuth T 3.16e+21 3 307 N 0.00e+00 72 47 P -3.16e+21 18 216 Moment Tensor: (dyne-cm) Component Value Mxx -7.57e+20 Mxy -2.87e+21 Mxz 8.50e+20 Myy 1.04e+21 Myz 3.89e+20 Mzz -2.80e+20 #####--------- ##########------------ ##############-------------- ################-------------- T ################---------------- #################---------------- #####################----------------- #######################----------------- #######################----------------- ######################--################## #############------------################# #######------------------################# ##-----------------------################# ------------------------################ ------------------------################ -----------------------############### ----------------------############## ----- -------------############# --- P -------------########### -- -------------########## ---------------####### ----------#### Global CMT Convention Moment Tensor: R T P -2.80e+20 8.50e+20 -3.89e+20 8.50e+20 -7.57e+20 2.87e+21 -3.89e+20 2.87e+21 1.04e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130702190733/index.html |
STK = 260 DIP = 80 RAKE = -15 MW = 3.60 HS = 5.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/07/02 19:07:33:0 48.00 19.25 10.0 3.6 Hungary Stations used: CZ.DPC CZ.JAVC CZ.KRUC GE.MORC GE.PSZ HU.BUD HU.MORH HU.SOP HU.TRPA IV.STAL MN.BLY MN.TRI OE.ABTA OE.ARSA OE.CONA OE.CSNA OE.KBA OE.MYKA OE.OBKA OE.SOKA PL.KSP PL.NIE PL.OJC RO.BZS SJ.BBLS Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.16e+21 dyne-cm Mw = 3.60 Z = 5 km Plane Strike Dip Rake NP1 260 80 -15 NP2 353 75 -170 Principal Axes: Axis Value Plunge Azimuth T 3.16e+21 3 307 N 0.00e+00 72 47 P -3.16e+21 18 216 Moment Tensor: (dyne-cm) Component Value Mxx -7.57e+20 Mxy -2.87e+21 Mxz 8.50e+20 Myy 1.04e+21 Myz 3.89e+20 Mzz -2.80e+20 #####--------- ##########------------ ##############-------------- ################-------------- T ################---------------- #################---------------- #####################----------------- #######################----------------- #######################----------------- ######################--################## #############------------################# #######------------------################# ##-----------------------################# ------------------------################ ------------------------################ -----------------------############### ----------------------############## ----- -------------############# --- P -------------########### -- -------------########## ---------------####### ----------#### Global CMT Convention Moment Tensor: R T P -2.80e+20 8.50e+20 -3.89e+20 8.50e+20 -7.57e+20 2.87e+21 -3.89e+20 2.87e+21 1.04e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130702190733/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 80 80 -10 3.40 0.3567 WVFGRD96 1.0 260 90 0 3.42 0.3862 WVFGRD96 2.0 260 75 -10 3.52 0.4715 WVFGRD96 3.0 260 80 -15 3.55 0.4979 WVFGRD96 4.0 260 75 -15 3.58 0.5105 WVFGRD96 5.0 260 80 -15 3.60 0.5131 WVFGRD96 6.0 260 80 -20 3.62 0.5094 WVFGRD96 7.0 260 80 -20 3.63 0.5050 WVFGRD96 8.0 260 80 -25 3.65 0.5011 WVFGRD96 9.0 260 75 -25 3.66 0.4912 WVFGRD96 10.0 270 75 30 3.67 0.4829 WVFGRD96 11.0 270 75 30 3.67 0.4813 WVFGRD96 12.0 270 75 25 3.67 0.4767 WVFGRD96 13.0 270 75 25 3.68 0.4754 WVFGRD96 14.0 275 70 25 3.68 0.4735 WVFGRD96 15.0 275 70 25 3.69 0.4710 WVFGRD96 16.0 275 65 20 3.70 0.4702 WVFGRD96 17.0 265 75 -15 3.71 0.4724 WVFGRD96 18.0 265 75 -15 3.72 0.4744 WVFGRD96 19.0 265 75 -15 3.73 0.4762 WVFGRD96 20.0 265 75 -15 3.74 0.4766 WVFGRD96 21.0 265 75 -15 3.74 0.4764 WVFGRD96 22.0 265 65 -30 3.75 0.4759 WVFGRD96 23.0 265 70 -30 3.76 0.4765 WVFGRD96 24.0 265 70 -30 3.76 0.4754 WVFGRD96 25.0 265 70 -30 3.77 0.4738 WVFGRD96 26.0 265 70 -30 3.78 0.4714 WVFGRD96 27.0 265 70 -30 3.78 0.4689 WVFGRD96 28.0 265 80 -10 3.80 0.4623 WVFGRD96 29.0 265 80 -10 3.80 0.4588
The best solution is
WVFGRD96 5.0 260 80 -15 3.60 0.5131
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Jul 2 18:21:14 CDT 2013