2013/06/05 18:45:46 47.97 19.24 10.0 4.10 Hungary
The elocate solution is given in elocate.txt. We ran this solution to check the location and to make the first motion plot. The first motion plot was made assuming a fixed source depth of 10 km, and has the waveform inversion nodal planes superimposed.
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/06/05 18:45:46:0 47.97 19.24 10.0 4.1 Hungary Stations used: CZ.DPC CZ.JAVC CZ.KHC CZ.KRUC CZ.NKC CZ.OKC CZ.TREC CZ.VRAC GE.MORC GE.PSZ GE.RUE GR.BRG GR.CLL GR.GEC2 GR.GRA1 GR.WET HU.BUD HU.SOP MN.BLY MN.PDG MN.VTS NI.ACOM NI.CIMO NI.CLUD NI.DRE NI.FUSE NI.PRED NI.SABO NI.ZOU2 OE.ARSA OE.CONA OE.CSNA OE.KBA OE.MOA OE.MYKA OE.OBKA OE.SOKA PL.BEL PL.GKP PL.KSP PL.NIE PL.OJC RO.BUR31 RO.BZS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.GBAS SL.GORS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SX.TANN Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 7.00e+21 dyne-cm Mw = 3.83 Z = 6 km Plane Strike Dip Rake NP1 80 90 10 NP2 350 80 180 Principal Axes: Axis Value Plunge Azimuth T 7.00e+21 7 305 N 0.00e+00 80 80 P -7.00e+21 7 215 Moment Tensor: (dyne-cm) Component Value Mxx -2.36e+21 Mxy -6.48e+21 Mxz 1.20e+21 Myy 2.36e+21 Myz -2.11e+20 Mzz -1.06e+14 ####---------- #########------------- #############--------------- #############---------------- T ##############----------------- # ##############------------------ ####################------------------ #####################------------------- ######################------------------ #######################--------------##### #######################---################ ################--------################## #####-------------------################## -----------------------################# ------------------------################ -----------------------############### ----------------------############## ---------------------############# -- --------------########### - P --------------########## --------------####### -----------### Global CMT Convention Moment Tensor: R T P -1.06e+14 1.20e+21 2.11e+20 1.20e+21 -2.36e+21 6.48e+21 2.11e+20 6.48e+21 2.36e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130605184546/index.html |
STK = 80 DIP = 90 RAKE = 10 MW = 3.83 HS = 6.0
Surprisingly, depth control was difficult for this strike-slip event. Perhaps this is because it was shallow and also because it was necessary to remove the shorter period information using a microseism filter. The elocate epicenter agrees well with the EMSC solution.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/06/05 18:45:46:0 47.97 19.24 10.0 4.1 Hungary Stations used: CZ.DPC CZ.JAVC CZ.KHC CZ.KRUC CZ.NKC CZ.OKC CZ.TREC CZ.VRAC GE.MORC GE.PSZ GE.RUE GR.BRG GR.CLL GR.GEC2 GR.GRA1 GR.WET HU.BUD HU.SOP MN.BLY MN.PDG MN.VTS NI.ACOM NI.CIMO NI.CLUD NI.DRE NI.FUSE NI.PRED NI.SABO NI.ZOU2 OE.ARSA OE.CONA OE.CSNA OE.KBA OE.MOA OE.MYKA OE.OBKA OE.SOKA PL.BEL PL.GKP PL.KSP PL.NIE PL.OJC RO.BUR31 RO.BZS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.GBAS SL.GORS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SX.TANN Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 7.00e+21 dyne-cm Mw = 3.83 Z = 6 km Plane Strike Dip Rake NP1 80 90 10 NP2 350 80 180 Principal Axes: Axis Value Plunge Azimuth T 7.00e+21 7 305 N 0.00e+00 80 80 P -7.00e+21 7 215 Moment Tensor: (dyne-cm) Component Value Mxx -2.36e+21 Mxy -6.48e+21 Mxz 1.20e+21 Myy 2.36e+21 Myz -2.11e+20 Mzz -1.06e+14 ####---------- #########------------- #############--------------- #############---------------- T ##############----------------- # ##############------------------ ####################------------------ #####################------------------- ######################------------------ #######################--------------##### #######################---################ ################--------################## #####-------------------################## -----------------------################# ------------------------################ -----------------------############### ----------------------############## ---------------------############# -- --------------########### - P --------------########## --------------####### -----------### Global CMT Convention Moment Tensor: R T P -1.06e+14 1.20e+21 2.11e+20 1.20e+21 -2.36e+21 6.48e+21 2.11e+20 6.48e+21 2.36e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130605184546/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 255 90 0 3.43 0.2550 WVFGRD96 1.0 75 90 0 3.49 0.2959 WVFGRD96 2.0 80 90 0 3.66 0.4911 WVFGRD96 3.0 80 90 0 3.73 0.5702 WVFGRD96 4.0 80 90 5 3.78 0.6106 WVFGRD96 5.0 260 90 -10 3.81 0.6276 WVFGRD96 6.0 80 90 10 3.83 0.6312 WVFGRD96 7.0 260 90 -10 3.86 0.6286 WVFGRD96 8.0 260 85 -20 3.88 0.6289 WVFGRD96 9.0 260 75 -15 3.89 0.6192 WVFGRD96 10.0 260 75 -15 3.91 0.6151 WVFGRD96 11.0 260 75 -15 3.92 0.6110 WVFGRD96 12.0 260 70 -15 3.93 0.6076 WVFGRD96 13.0 265 65 -10 3.92 0.6042 WVFGRD96 14.0 265 70 -10 3.93 0.6044 WVFGRD96 15.0 265 70 -10 3.94 0.6045 WVFGRD96 16.0 265 70 -15 3.95 0.6047 WVFGRD96 17.0 265 70 -15 3.96 0.6049 WVFGRD96 18.0 265 70 -15 3.97 0.6051 WVFGRD96 19.0 265 70 -15 3.98 0.6044 WVFGRD96 20.0 265 70 -15 3.99 0.6030 WVFGRD96 21.0 265 70 -15 4.00 0.6020 WVFGRD96 22.0 265 70 -15 4.00 0.6007 WVFGRD96 23.0 265 65 -20 4.01 0.5987 WVFGRD96 24.0 265 70 -20 4.02 0.5961 WVFGRD96 25.0 265 65 -20 4.02 0.5949 WVFGRD96 26.0 265 70 -25 4.03 0.5929 WVFGRD96 27.0 265 70 -25 4.03 0.5902 WVFGRD96 28.0 265 70 -25 4.04 0.5874 WVFGRD96 29.0 265 70 -25 4.05 0.5858
The best solution is
WVFGRD96 6.0 80 90 10 3.83 0.6312
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
There are two data systems at MORC. The as seen in the next figure shows the
ground velocity in units of m/s for the three channels of the GE and CZ networks.
The CZ network ground motions are a factor of 4 greater than those of the GE network
data set. Since the GE traces agree with all others used in the source inversion, the conclusion is that the
metadata for the MORC-CZ channels is not correct.
The polezero files obtained from the GFZ data center are as follow: