2013/04/22 22:28:47 47.69 20.34 10.0 4.50 Hungary
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/04/22 22:28:47:0 47.69 20.34 10.0 4.5 Hungary Stations used: CZ.JAVC CZ.KHC CZ.NKC CZ.OKC CZ.PRU CZ.VRAC GE.MORC GR.BRG GR.FUR GR.GRB3 GR.GRC2 GR.WET HU.BUD HU.PSZ HU.SOP HU.TRPA MN.BLY MN.PDG MN.TRI NI.ACOM NI.CGRP NI.CIMO NI.CLUD NI.DRE NI.FUSE NI.PRED NI.SABO NI.ZOU2 OE.ARSA OE.KBA OE.MOA OE.OBKA OE.WTTA PL.BEL PL.GKP PL.KSP PL.OJC RO.BUR31 RO.BZS RO.MLR SJ.BBLS SJ.FRGS SL.BOJS SL.CADS SL.CRNS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VNDS SL.VOJS SX.TANN TH.MODW Filtering commands used: hp c 0.02 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 3.80e+22 dyne-cm Mw = 4.32 Z = 4 km Plane Strike Dip Rake NP1 130 45 90 NP2 310 45 90 Principal Axes: Axis Value Plunge Azimuth T 3.80e+22 90 95 N 0.00e+00 -0 310 P -3.80e+22 -0 220 Moment Tensor: (dyne-cm) Component Value Mxx -2.23e+22 Mxy -1.87e+22 Mxz -5.18e+14 Myy -1.57e+22 Myz -1.97e+15 Mzz 3.80e+22 -------------- ---------------------- ---------------------------- #############----------------- -##################--------------- --#####################------------- ---########################----------- ----#########################----------- ----###########################--------- ------###########################--------- ------################# #########------- -------################ T ##########------ ---------############## ##########------ ---------###########################---- -----------#########################---- -----------########################--- -------------#####################-- ---------------##################- --------------############# P -------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.80e+22 -5.18e+14 1.97e+15 -5.18e+14 -2.23e+22 1.87e+22 1.97e+15 1.87e+22 -1.57e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130422222847/index.html |
STK = 310 DIP = 45 RAKE = 90 MW = 4.32 HS = 4.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/04/22 22:28:47:0 47.69 20.34 10.0 4.5 Hungary Stations used: CZ.JAVC CZ.KHC CZ.NKC CZ.OKC CZ.PRU CZ.VRAC GE.MORC GR.BRG GR.FUR GR.GRB3 GR.GRC2 GR.WET HU.BUD HU.PSZ HU.SOP HU.TRPA MN.BLY MN.PDG MN.TRI NI.ACOM NI.CGRP NI.CIMO NI.CLUD NI.DRE NI.FUSE NI.PRED NI.SABO NI.ZOU2 OE.ARSA OE.KBA OE.MOA OE.OBKA OE.WTTA PL.BEL PL.GKP PL.KSP PL.OJC RO.BUR31 RO.BZS RO.MLR SJ.BBLS SJ.FRGS SL.BOJS SL.CADS SL.CRNS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VNDS SL.VOJS SX.TANN TH.MODW Filtering commands used: hp c 0.02 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 3.80e+22 dyne-cm Mw = 4.32 Z = 4 km Plane Strike Dip Rake NP1 130 45 90 NP2 310 45 90 Principal Axes: Axis Value Plunge Azimuth T 3.80e+22 90 95 N 0.00e+00 -0 310 P -3.80e+22 -0 220 Moment Tensor: (dyne-cm) Component Value Mxx -2.23e+22 Mxy -1.87e+22 Mxz -5.18e+14 Myy -1.57e+22 Myz -1.97e+15 Mzz 3.80e+22 -------------- ---------------------- ---------------------------- #############----------------- -##################--------------- --#####################------------- ---########################----------- ----#########################----------- ----###########################--------- ------###########################--------- ------################# #########------- -------################ T ##########------ ---------############## ##########------ ---------###########################---- -----------#########################---- -----------########################--- -------------#####################-- ---------------##################- --------------############# P -------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.80e+22 -5.18e+14 1.97e+15 -5.18e+14 -2.23e+22 1.87e+22 1.97e+15 1.87e+22 -1.57e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130422222847/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.04 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 290 45 60 4.13 0.3435 WVFGRD96 1.0 295 45 70 4.16 0.3573 WVFGRD96 2.0 290 45 60 4.23 0.4265 WVFGRD96 3.0 300 45 75 4.28 0.4567 WVFGRD96 4.0 310 45 90 4.32 0.4624 WVFGRD96 5.0 315 40 95 4.34 0.4433 WVFGRD96 6.0 320 40 100 4.34 0.4095 WVFGRD96 7.0 120 55 75 4.34 0.3697 WVFGRD96 8.0 120 55 75 4.38 0.3977 WVFGRD96 9.0 95 35 40 4.32 0.3721 WVFGRD96 10.0 90 35 30 4.31 0.3818 WVFGRD96 11.0 90 40 30 4.31 0.3914 WVFGRD96 12.0 90 40 30 4.31 0.4005 WVFGRD96 13.0 90 40 30 4.32 0.4089 WVFGRD96 14.0 90 40 30 4.32 0.4160 WVFGRD96 15.0 85 45 25 4.32 0.4216 WVFGRD96 16.0 85 45 25 4.33 0.4274 WVFGRD96 17.0 85 45 25 4.33 0.4316 WVFGRD96 18.0 85 45 25 4.34 0.4343 WVFGRD96 19.0 85 45 25 4.34 0.4357 WVFGRD96 20.0 85 50 25 4.35 0.4364 WVFGRD96 21.0 85 50 25 4.36 0.4373 WVFGRD96 22.0 85 50 25 4.36 0.4370 WVFGRD96 23.0 85 50 25 4.37 0.4356 WVFGRD96 24.0 85 50 25 4.37 0.4333 WVFGRD96 25.0 85 50 25 4.38 0.4302 WVFGRD96 26.0 85 50 25 4.38 0.4263 WVFGRD96 27.0 85 55 25 4.39 0.4222 WVFGRD96 28.0 80 55 20 4.39 0.4180 WVFGRD96 29.0 80 55 20 4.40 0.4134
The best solution is
WVFGRD96 4.0 310 45 90 4.32 0.4624
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.04 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Apr 23 07:47:55 CDT 2013