The EMSC location is
2012/12/13 21:39:27 41.13 19.73 10.0 4.10 Albania
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2012/12/13 21:39:27:0 41.13 19.73 10.0 4.1 Albania Stations used: HL.KEK HT.AGG HT.FNA HT.GRG HT.HORT HT.KNT HT.LIT HT.SOH HT.SRS HT.THE HT.XOR MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS RO.BZS RO.DEV RO.LOT SJ.BBLS SJ.FRGS SL.BOJS SL.GCIS SL.KOGS SL.SKDS Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 26 km Plane Strike Dip Rake NP1 167 57 130 NP2 290 50 45 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 57 134 N 0.00e+00 33 323 P -1.78e+22 4 230 Moment Tensor: (dyne-cm) Component Value Mxx -4.74e+21 Mxy -1.14e+22 Mxz -4.82e+21 Myy -7.64e+21 Myz 6.85e+21 Mzz 1.24e+22 ##------------ #####----------------- #######--------------------- #######----------------------- #########------------------------- ####-----##########----------------- #---------###############------------- -----------##################----------- -----------#####################-------- ------------#######################------- ------------#########################----- -------------#########################---- -------------##########################--- -------------############ ###########- -------------############ T ###########- -------------########### ########### -------------####################### - ---------##################### P ----------################## ------------############### ------------########## ----------#### Global CMT Convention Moment Tensor: R T P 1.24e+22 -4.82e+21 -6.85e+21 -4.82e+21 -4.74e+21 1.14e+22 -6.85e+21 1.14e+22 -7.64e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121213213927/index.html |
STK = 290 DIP = 50 RAKE = 45 MW = 4.10 HS = 26.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2012/12/13 21:39:27:0 41.13 19.73 10.0 4.1 Albania Stations used: HL.KEK HT.AGG HT.FNA HT.GRG HT.HORT HT.KNT HT.LIT HT.SOH HT.SRS HT.THE HT.XOR MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS RO.BZS RO.DEV RO.LOT SJ.BBLS SJ.FRGS SL.BOJS SL.GCIS SL.KOGS SL.SKDS Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 26 km Plane Strike Dip Rake NP1 167 57 130 NP2 290 50 45 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 57 134 N 0.00e+00 33 323 P -1.78e+22 4 230 Moment Tensor: (dyne-cm) Component Value Mxx -4.74e+21 Mxy -1.14e+22 Mxz -4.82e+21 Myy -7.64e+21 Myz 6.85e+21 Mzz 1.24e+22 ##------------ #####----------------- #######--------------------- #######----------------------- #########------------------------- ####-----##########----------------- #---------###############------------- -----------##################----------- -----------#####################-------- ------------#######################------- ------------#########################----- -------------#########################---- -------------##########################--- -------------############ ###########- -------------############ T ###########- -------------########### ########### -------------####################### - ---------##################### P ----------################## ------------############### ------------########## ----------#### Global CMT Convention Moment Tensor: R T P 1.24e+22 -4.82e+21 -6.85e+21 -4.82e+21 -4.74e+21 1.14e+22 -6.85e+21 1.14e+22 -7.64e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121213213927/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 335 45 -90 3.69 0.2918 WVFGRD96 1.0 155 45 -90 3.73 0.2870 WVFGRD96 2.0 155 45 -90 3.83 0.3603 WVFGRD96 3.0 40 45 -80 3.84 0.3508 WVFGRD96 4.0 50 80 -5 3.83 0.3266 WVFGRD96 5.0 50 80 0 3.87 0.3241 WVFGRD96 6.0 50 75 0 3.89 0.3144 WVFGRD96 7.0 50 70 5 3.91 0.3069 WVFGRD96 8.0 265 70 40 3.86 0.3104 WVFGRD96 9.0 270 70 45 3.88 0.3321 WVFGRD96 10.0 285 55 40 3.92 0.3614 WVFGRD96 11.0 290 50 45 3.95 0.3993 WVFGRD96 12.0 290 50 45 3.96 0.4379 WVFGRD96 13.0 295 45 50 3.99 0.4725 WVFGRD96 14.0 295 45 50 4.00 0.5030 WVFGRD96 15.0 295 45 50 4.01 0.5304 WVFGRD96 16.0 295 45 50 4.02 0.5527 WVFGRD96 17.0 295 45 50 4.03 0.5719 WVFGRD96 18.0 295 45 50 4.03 0.5886 WVFGRD96 19.0 295 45 50 4.04 0.6022 WVFGRD96 20.0 295 45 50 4.05 0.6145 WVFGRD96 21.0 295 45 50 4.06 0.6235 WVFGRD96 22.0 295 45 50 4.07 0.6312 WVFGRD96 23.0 295 45 50 4.08 0.6380 WVFGRD96 24.0 295 45 50 4.08 0.6422 WVFGRD96 25.0 290 50 45 4.09 0.6459 WVFGRD96 26.0 290 50 45 4.10 0.6476 WVFGRD96 27.0 290 50 45 4.11 0.6473 WVFGRD96 28.0 290 50 45 4.11 0.6461 WVFGRD96 29.0 290 50 45 4.12 0.6434 WVFGRD96 30.0 290 50 45 4.13 0.6394 WVFGRD96 31.0 290 50 45 4.13 0.6343 WVFGRD96 32.0 290 50 45 4.14 0.6278 WVFGRD96 33.0 290 50 45 4.15 0.6204 WVFGRD96 34.0 110 50 45 4.16 0.6138 WVFGRD96 35.0 110 50 45 4.17 0.6052 WVFGRD96 36.0 110 50 45 4.18 0.5965 WVFGRD96 37.0 110 50 45 4.19 0.5873 WVFGRD96 38.0 110 50 45 4.20 0.5763 WVFGRD96 39.0 110 50 45 4.21 0.5648 WVFGRD96 40.0 120 50 50 4.32 0.5697 WVFGRD96 41.0 120 50 50 4.33 0.5642 WVFGRD96 42.0 120 50 50 4.33 0.5566 WVFGRD96 43.0 120 50 55 4.33 0.5483 WVFGRD96 44.0 120 50 55 4.34 0.5394 WVFGRD96 45.0 120 50 55 4.35 0.5294 WVFGRD96 46.0 120 50 55 4.35 0.5188 WVFGRD96 47.0 120 55 55 4.36 0.5076 WVFGRD96 48.0 120 55 55 4.37 0.4967 WVFGRD96 49.0 125 55 65 4.37 0.4853
The best solution is
WVFGRD96 26.0 290 50 45 4.10 0.6476
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Dec 13 20:03:00 CST 2012