2012/11/12 23:18:42 42.558 19.021 14.0 4.60 Montenegro
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2012/11/12 23:18:42:5 42.56 19.02 14.0 4.6 Montenegro Stations used: HT.AGG HT.FNA HT.GRG HU.BUD MN.BLY MN.DIVS MN.PDG MN.TIR MN.TRI MN.VTS RO.BZS RO.DEV RO.VOIR SJ.BBLS SJ.FRGS Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.37e+22 dyne-cm Mw = 4.42 Z = 26 km Plane Strike Dip Rake NP1 109 55 87 NP2 295 35 95 Principal Axes: Axis Value Plunge Azimuth T 5.37e+22 80 5 N 0.00e+00 3 111 P -5.37e+22 10 201 Moment Tensor: (dyne-cm) Component Value Mxx -4.33e+22 Mxy -1.75e+22 Mxz 1.82e+22 Myy -6.92e+21 Myz 4.26e+21 Mzz 5.03e+22 -------------- ---------------------- ---------------------------- -----###########-------------- --#####################----------- -##########################--------- ###############################------- ##################################------ -################## #############----- ---################# T ##############----- ----################ ###############---- ------#################################--- --------###############################--- ----------#############################- -------------##########################- ----------------####################-- ------------------------------------ ---------------------------------- ------------------------------ ------ ------------------- --- P ---------------- ------------ Global CMT Convention Moment Tensor: R T P 5.03e+22 1.82e+22 -4.26e+21 1.82e+22 -4.33e+22 1.75e+22 -4.26e+21 1.75e+22 -6.92e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121112231842/index.html |
STK = 295 DIP = 35 RAKE = 95 MW = 4.42 HS = 26.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2012/11/12 23:18:42:5 42.56 19.02 14.0 4.6 Montenegro Stations used: HT.AGG HT.FNA HT.GRG HU.BUD MN.BLY MN.DIVS MN.PDG MN.TIR MN.TRI MN.VTS RO.BZS RO.DEV RO.VOIR SJ.BBLS SJ.FRGS Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.37e+22 dyne-cm Mw = 4.42 Z = 26 km Plane Strike Dip Rake NP1 109 55 87 NP2 295 35 95 Principal Axes: Axis Value Plunge Azimuth T 5.37e+22 80 5 N 0.00e+00 3 111 P -5.37e+22 10 201 Moment Tensor: (dyne-cm) Component Value Mxx -4.33e+22 Mxy -1.75e+22 Mxz 1.82e+22 Myy -6.92e+21 Myz 4.26e+21 Mzz 5.03e+22 -------------- ---------------------- ---------------------------- -----###########-------------- --#####################----------- -##########################--------- ###############################------- ##################################------ -################## #############----- ---################# T ##############----- ----################ ###############---- ------#################################--- --------###############################--- ----------#############################- -------------##########################- ----------------####################-- ------------------------------------ ---------------------------------- ------------------------------ ------ ------------------- --- P ---------------- ------------ Global CMT Convention Moment Tensor: R T P 5.03e+22 1.82e+22 -4.26e+21 1.82e+22 -4.33e+22 1.75e+22 -4.26e+21 1.75e+22 -6.92e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121112231842/index.html |
USGS/SLU Regional Moment Solution MONTENEGRO 12/11/12 23:18:42.63 Epicenter: 42.587 19.018 MW 4.4 USGS/SLU REGIONAL MOMENT TENSOR Depth 25 No. of sta: 19 Moment Tensor; Scale 10**15 Nm Mrr= 5.70 Mtt=-4.76 Mpp=-0.93 Mrt= 0.63 Mrp=-1.20 Mtp= 2.13 Principal axes: T Val= 5.91 Plg=80 Azm= 81 N -0.10 8 296 P -5.81 5 205 Best Double Couple:Mo=5.9*10**15 NP1:Strike=286 Dip=40 Slip= 78 NP2: 122 51 100 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 290 45 -90 4.03 0.3185 WVFGRD96 1.0 110 45 -90 4.06 0.3047 WVFGRD96 2.0 110 50 -90 4.17 0.3810 WVFGRD96 3.0 280 40 -85 4.21 0.3597 WVFGRD96 4.0 275 40 -90 4.22 0.2883 WVFGRD96 5.0 155 40 -10 4.15 0.2690 WVFGRD96 6.0 160 40 5 4.15 0.2876 WVFGRD96 7.0 165 40 15 4.16 0.3105 WVFGRD96 8.0 160 30 0 4.23 0.3253 WVFGRD96 9.0 165 30 10 4.23 0.3497 WVFGRD96 10.0 85 75 70 4.27 0.3864 WVFGRD96 11.0 90 70 70 4.30 0.4277 WVFGRD96 12.0 90 70 70 4.30 0.4678 WVFGRD96 13.0 95 65 75 4.33 0.5062 WVFGRD96 14.0 95 60 70 4.35 0.5396 WVFGRD96 15.0 95 60 70 4.35 0.5702 WVFGRD96 16.0 100 60 75 4.36 0.5956 WVFGRD96 17.0 100 60 75 4.37 0.6161 WVFGRD96 18.0 100 60 75 4.37 0.6324 WVFGRD96 19.0 100 55 75 4.38 0.6459 WVFGRD96 20.0 100 55 75 4.39 0.6568 WVFGRD96 21.0 105 55 80 4.40 0.6644 WVFGRD96 22.0 105 55 80 4.41 0.6703 WVFGRD96 23.0 105 55 80 4.41 0.6750 WVFGRD96 24.0 105 55 80 4.41 0.6776 WVFGRD96 25.0 105 55 85 4.41 0.6789 WVFGRD96 26.0 295 35 95 4.42 0.6790 WVFGRD96 27.0 110 55 90 4.43 0.6778 WVFGRD96 28.0 110 50 90 4.43 0.6761 WVFGRD96 29.0 110 50 90 4.44 0.6737 WVFGRD96 30.0 115 50 95 4.45 0.6698 WVFGRD96 31.0 290 40 85 4.46 0.6654 WVFGRD96 32.0 115 50 95 4.46 0.6598 WVFGRD96 33.0 115 50 95 4.47 0.6538 WVFGRD96 34.0 285 40 80 4.48 0.6467 WVFGRD96 35.0 285 40 80 4.49 0.6394 WVFGRD96 36.0 285 40 80 4.50 0.6308 WVFGRD96 37.0 285 40 80 4.51 0.6224 WVFGRD96 38.0 285 40 75 4.53 0.6131 WVFGRD96 39.0 285 40 75 4.55 0.6034
The best solution is
WVFGRD96 26.0 295 35 95 4.42 0.6790
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Nov 13 07:42:58 CST 2012