2011/08/03 01:36:07 44.07 3.90 10.0 3.50 France
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2011/08/03 01:36:07:9 44.07 3.90 10.0 3.5 France Stations used: CH.AIGLE CH.BALST CH.DAVOX CH.EMV CH.FUSIO CH.GIMEL CH.HASLI CH.LLS CH.SENIN CH.SULZ CH.ZUR FR.ARBF FR.ATE FR.CALF FR.ESCA FR.ISO FR.MLYF G.ECH GU.BHB GU.LSD GU.PCP GU.RORO GU.RRL GU.RSP GU.SATI GU.TRAV IV.DOI IV.MRGE IV.QLNO MN.BNI MN.TUE MN.VLC OE.DAVA OE.FETA OE.RETA Filtering commands used: hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.48e+21 dyne-cm Mw = 3.53 Z = 16 km Plane Strike Dip Rake NP1 125 50 60 NP2 347 48 121 Principal Axes: Axis Value Plunge Azimuth T 2.48e+21 67 328 N 0.00e+00 23 145 P -2.48e+21 1 236 Moment Tensor: (dyne-cm) Component Value Mxx -5.27e+20 Mxy -1.32e+21 Mxz 7.64e+20 Myy -1.59e+21 Myz -4.40e+20 Mzz 2.12e+21 ####---------- ############---------- #################----------- ####################---------- #######################----------- -########################----------- --#########################----------- ---############ ###########----------- ----########### T ############---------- ------########## ############----------- -------########################----------- --------########################---------- ---------#######################---------- ----------#####################--------- ------------###################--------- -------------#################-------- ------------#############-------- P -----------------########------- ------------------------###### ----------------------###### ------------------#### -------------# Global CMT Convention Moment Tensor: R T P 2.12e+21 7.64e+20 4.40e+20 7.64e+20 -5.27e+20 1.32e+21 4.40e+20 1.32e+21 -1.59e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20110803013607/index.html |
STK = 125 DIP = 50 RAKE = 60 MW = 3.53 HS = 16.0
The initial EMSC location led to large time shifts for the waveforms fits. These coordinates were 2011-08-03 10:36:11.0 44.30N 4.35E H=2 M=4.3. The parameters used in this version are the automatic determination of INGV. The magnitude is better and the location is moved in propere direction. The waveform analysis is not overly satisfying because of the large time delay required for ATE(FR), a timing error. Many of the waveforms appear to be flipped. The station distribution for location and source inversion is not really that good.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2011/08/03 01:36:07:9 44.07 3.90 10.0 3.5 France Stations used: CH.AIGLE CH.BALST CH.DAVOX CH.EMV CH.FUSIO CH.GIMEL CH.HASLI CH.LLS CH.SENIN CH.SULZ CH.ZUR FR.ARBF FR.ATE FR.CALF FR.ESCA FR.ISO FR.MLYF G.ECH GU.BHB GU.LSD GU.PCP GU.RORO GU.RRL GU.RSP GU.SATI GU.TRAV IV.DOI IV.MRGE IV.QLNO MN.BNI MN.TUE MN.VLC OE.DAVA OE.FETA OE.RETA Filtering commands used: hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.48e+21 dyne-cm Mw = 3.53 Z = 16 km Plane Strike Dip Rake NP1 125 50 60 NP2 347 48 121 Principal Axes: Axis Value Plunge Azimuth T 2.48e+21 67 328 N 0.00e+00 23 145 P -2.48e+21 1 236 Moment Tensor: (dyne-cm) Component Value Mxx -5.27e+20 Mxy -1.32e+21 Mxz 7.64e+20 Myy -1.59e+21 Myz -4.40e+20 Mzz 2.12e+21 ####---------- ############---------- #################----------- ####################---------- #######################----------- -########################----------- --#########################----------- ---############ ###########----------- ----########### T ############---------- ------########## ############----------- -------########################----------- --------########################---------- ---------#######################---------- ----------#####################--------- ------------###################--------- -------------#################-------- ------------#############-------- P -----------------########------- ------------------------###### ----------------------###### ------------------#### -------------# Global CMT Convention Moment Tensor: R T P 2.12e+21 7.64e+20 4.40e+20 7.64e+20 -5.27e+20 1.32e+21 4.40e+20 1.32e+21 -1.59e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20110803013607/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 145 40 -95 3.16 0.3424 WVFGRD96 1.0 340 50 -85 3.20 0.3520 WVFGRD96 2.0 340 50 -75 3.28 0.3851 WVFGRD96 3.0 350 55 -70 3.34 0.3612 WVFGRD96 4.0 120 35 40 3.37 0.3240 WVFGRD96 5.0 95 35 0 3.37 0.3422 WVFGRD96 6.0 90 35 -10 3.37 0.3691 WVFGRD96 7.0 90 40 -10 3.37 0.3917 WVFGRD96 8.0 95 30 5 3.43 0.4061 WVFGRD96 9.0 20 70 55 3.46 0.4245 WVFGRD96 10.0 25 65 55 3.48 0.4410 WVFGRD96 11.0 30 60 60 3.50 0.4542 WVFGRD96 12.0 35 55 65 3.53 0.4619 WVFGRD96 13.0 35 55 65 3.53 0.4659 WVFGRD96 14.0 130 45 70 3.52 0.4731 WVFGRD96 15.0 130 50 65 3.52 0.4781 WVFGRD96 16.0 125 50 60 3.53 0.4793 WVFGRD96 17.0 125 50 60 3.53 0.4780 WVFGRD96 18.0 125 50 55 3.52 0.4738 WVFGRD96 19.0 120 55 50 3.54 0.4685 WVFGRD96 20.0 120 55 50 3.54 0.4616 WVFGRD96 21.0 120 55 50 3.54 0.4542 WVFGRD96 22.0 120 55 50 3.54 0.4453 WVFGRD96 23.0 120 55 50 3.54 0.4356 WVFGRD96 24.0 120 60 45 3.56 0.4268 WVFGRD96 25.0 120 60 45 3.56 0.4174 WVFGRD96 26.0 295 60 45 3.56 0.4087 WVFGRD96 27.0 295 60 45 3.56 0.3998 WVFGRD96 28.0 295 60 40 3.57 0.3909 WVFGRD96 29.0 295 60 40 3.57 0.3821
The best solution is
WVFGRD96 16.0 125 50 60 3.53 0.4793
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.03 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Aug 4 07:39:27 CDT 2011