The program
SLU Moment Tensor Solution ENS 2010/04/22 01:24:00:0 35.26 -6.29 120.0 4.7 Moroc Stations used: IB.NKM IG.CEUT XB.PM01 XB.PM03 XB.PM04 XB.PM05 XB.PM06 XB.PM07 XB.PM08 XB.PM12 XB.PM13 XB.PS01 XB.PS02 XB.PS03 XB.PS42 Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.67e+22 dyne-cm Mw = 4.31 Z = 70 km Plane Strike Dip Rake NP1 285 57 123 NP2 55 45 50 Principal Axes: Axis Value Plunge Azimuth T 3.67e+22 62 249 N 0.00e+00 27 86 P -3.67e+22 7 352 Moment Tensor: (dyne-cm) Component Value Mxx -3.46e+22 Mxy 7.51e+21 Mxz -9.58e+21 Myy 6.43e+21 Myz -1.37e+22 Mzz 2.81e+22 --- P -------- ------- ------------ ---------------------------- ------------------------------ ---------------------------------- -----------------------------------# -----###############----------------## --#########################----------### ##############################-------### ##################################---##### ####################################-##### ############# ###################---#### ############# T ##################------## ############ #################-------- ##############################---------- ###########################----------- #######################------------- ##################---------------- ----######-------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.81e+22 -9.58e+21 1.37e+22 -9.58e+21 -3.46e+22 -7.51e+21 1.37e+22 -7.51e+21 6.43e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100422012400/index.html |
STK = 55 DIP = 45 RAKE = 50 MW = 4.31 HS = 70.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2010/04/22 01:24:00:0 35.26 -6.29 120.0 4.7 Moroc Stations used: IB.NKM IG.CEUT XB.PM01 XB.PM03 XB.PM04 XB.PM05 XB.PM06 XB.PM07 XB.PM08 XB.PM12 XB.PM13 XB.PS01 XB.PS02 XB.PS03 XB.PS42 Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.67e+22 dyne-cm Mw = 4.31 Z = 70 km Plane Strike Dip Rake NP1 285 57 123 NP2 55 45 50 Principal Axes: Axis Value Plunge Azimuth T 3.67e+22 62 249 N 0.00e+00 27 86 P -3.67e+22 7 352 Moment Tensor: (dyne-cm) Component Value Mxx -3.46e+22 Mxy 7.51e+21 Mxz -9.58e+21 Myy 6.43e+21 Myz -1.37e+22 Mzz 2.81e+22 --- P -------- ------- ------------ ---------------------------- ------------------------------ ---------------------------------- -----------------------------------# -----###############----------------## --#########################----------### ##############################-------### ##################################---##### ####################################-##### ############# ###################---#### ############# T ##################------## ############ #################-------- ##############################---------- ###########################----------- #######################------------- ##################---------------- ----######-------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.81e+22 -9.58e+21 1.37e+22 -9.58e+21 -3.46e+22 -7.51e+21 1.37e+22 -7.51e+21 6.43e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100422012400/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 170 50 -70 3.44 0.1403 WVFGRD96 1.0 165 50 -75 3.49 0.1451 WVFGRD96 2.0 170 50 -70 3.59 0.1781 WVFGRD96 3.0 175 55 -65 3.66 0.1785 WVFGRD96 4.0 20 40 -20 3.69 0.1749 WVFGRD96 5.0 25 45 -5 3.70 0.1906 WVFGRD96 6.0 30 45 5 3.73 0.2094 WVFGRD96 7.0 30 50 10 3.74 0.2291 WVFGRD96 8.0 30 45 5 3.80 0.2457 WVFGRD96 9.0 30 45 10 3.81 0.2631 WVFGRD96 10.0 30 45 10 3.83 0.2802 WVFGRD96 11.0 30 50 15 3.84 0.2958 WVFGRD96 12.0 30 50 10 3.85 0.3100 WVFGRD96 13.0 30 55 15 3.86 0.3224 WVFGRD96 14.0 30 55 15 3.87 0.3335 WVFGRD96 15.0 30 55 10 3.88 0.3434 WVFGRD96 16.0 30 55 10 3.89 0.3520 WVFGRD96 17.0 30 60 15 3.90 0.3594 WVFGRD96 18.0 30 60 15 3.91 0.3661 WVFGRD96 19.0 30 60 15 3.92 0.3718 WVFGRD96 20.0 30 60 15 3.92 0.3768 WVFGRD96 21.0 30 60 15 3.94 0.3806 WVFGRD96 22.0 30 60 15 3.94 0.3841 WVFGRD96 23.0 30 60 15 3.95 0.3869 WVFGRD96 24.0 30 60 15 3.96 0.3894 WVFGRD96 25.0 30 60 15 3.96 0.3912 WVFGRD96 26.0 35 60 20 3.97 0.3927 WVFGRD96 27.0 35 60 20 3.98 0.3944 WVFGRD96 28.0 35 60 20 3.99 0.3958 WVFGRD96 29.0 35 60 20 3.99 0.3968 WVFGRD96 30.0 35 60 20 4.00 0.3975 WVFGRD96 31.0 35 60 20 4.01 0.3981 WVFGRD96 32.0 35 60 20 4.01 0.3984 WVFGRD96 33.0 35 60 20 4.02 0.3984 WVFGRD96 34.0 35 60 20 4.03 0.3984 WVFGRD96 35.0 35 60 20 4.03 0.3984 WVFGRD96 36.0 35 60 20 4.04 0.3981 WVFGRD96 37.0 35 60 20 4.05 0.3979 WVFGRD96 38.0 30 65 20 4.06 0.3984 WVFGRD96 39.0 30 65 20 4.07 0.3989 WVFGRD96 40.0 40 50 25 4.16 0.3940 WVFGRD96 41.0 35 55 25 4.16 0.3962 WVFGRD96 42.0 35 55 25 4.16 0.3986 WVFGRD96 43.0 35 55 25 4.17 0.4009 WVFGRD96 44.0 35 60 30 4.18 0.4033 WVFGRD96 45.0 35 60 30 4.18 0.4054 WVFGRD96 46.0 35 60 30 4.19 0.4071 WVFGRD96 47.0 35 60 30 4.20 0.4091 WVFGRD96 48.0 35 60 30 4.20 0.4109 WVFGRD96 49.0 35 60 30 4.21 0.4122 WVFGRD96 50.0 35 60 30 4.21 0.4135 WVFGRD96 51.0 40 55 30 4.22 0.4151 WVFGRD96 52.0 40 55 35 4.23 0.4166 WVFGRD96 53.0 40 55 35 4.23 0.4182 WVFGRD96 54.0 40 55 35 4.23 0.4195 WVFGRD96 55.0 40 55 35 4.24 0.4208 WVFGRD96 56.0 40 55 35 4.24 0.4218 WVFGRD96 57.0 45 50 40 4.25 0.4234 WVFGRD96 58.0 45 50 40 4.26 0.4253 WVFGRD96 59.0 45 50 40 4.26 0.4266 WVFGRD96 60.0 45 50 40 4.27 0.4278 WVFGRD96 61.0 45 50 40 4.27 0.4288 WVFGRD96 62.0 50 45 40 4.28 0.4294 WVFGRD96 63.0 50 45 40 4.28 0.4306 WVFGRD96 64.0 50 45 40 4.28 0.4312 WVFGRD96 65.0 50 45 45 4.29 0.4317 WVFGRD96 66.0 55 45 50 4.30 0.4323 WVFGRD96 67.0 55 45 50 4.30 0.4331 WVFGRD96 68.0 55 45 50 4.31 0.4335 WVFGRD96 69.0 55 45 50 4.31 0.4337 WVFGRD96 70.0 55 45 50 4.31 0.4338 WVFGRD96 71.0 55 45 50 4.31 0.4336 WVFGRD96 72.0 55 45 50 4.32 0.4331 WVFGRD96 73.0 55 45 55 4.32 0.4325 WVFGRD96 74.0 55 45 55 4.33 0.4322 WVFGRD96 75.0 55 45 55 4.33 0.4314 WVFGRD96 76.0 55 45 55 4.33 0.4307 WVFGRD96 77.0 60 45 60 4.34 0.4299 WVFGRD96 78.0 60 45 60 4.34 0.4291 WVFGRD96 79.0 60 45 60 4.34 0.4281 WVFGRD96 80.0 60 45 60 4.34 0.4272 WVFGRD96 81.0 60 45 60 4.34 0.4257 WVFGRD96 82.0 60 45 60 4.35 0.4247 WVFGRD96 83.0 60 45 65 4.35 0.4233 WVFGRD96 84.0 60 45 65 4.36 0.4219 WVFGRD96 85.0 60 45 65 4.36 0.4205 WVFGRD96 86.0 60 45 65 4.36 0.4188 WVFGRD96 87.0 60 45 65 4.36 0.4172 WVFGRD96 88.0 65 45 70 4.37 0.4160 WVFGRD96 89.0 65 45 70 4.37 0.4146 WVFGRD96 90.0 65 45 70 4.37 0.4133 WVFGRD96 91.0 65 45 70 4.37 0.4117 WVFGRD96 92.0 65 45 70 4.37 0.4103 WVFGRD96 93.0 65 45 70 4.37 0.4084 WVFGRD96 94.0 65 45 70 4.37 0.4069 WVFGRD96 95.0 65 45 70 4.37 0.4051 WVFGRD96 96.0 65 45 70 4.38 0.4030 WVFGRD96 97.0 65 45 75 4.38 0.4014 WVFGRD96 98.0 65 45 75 4.38 0.3993 WVFGRD96 99.0 65 45 75 4.38 0.3976 WVFGRD96 100.0 70 45 80 4.39 0.3956 WVFGRD96 101.0 70 45 80 4.39 0.3939 WVFGRD96 102.0 70 45 80 4.39 0.3917 WVFGRD96 103.0 70 45 80 4.39 0.3900 WVFGRD96 104.0 70 45 80 4.39 0.3881 WVFGRD96 105.0 70 45 80 4.39 0.3859 WVFGRD96 106.0 260 45 95 4.40 0.3830 WVFGRD96 107.0 260 45 95 4.40 0.3810 WVFGRD96 108.0 70 45 80 4.40 0.3794 WVFGRD96 109.0 70 45 80 4.40 0.3776 WVFGRD96 110.0 70 45 80 4.40 0.3751 WVFGRD96 111.0 70 45 80 4.40 0.3728 WVFGRD96 112.0 260 40 90 4.41 0.3704 WVFGRD96 113.0 260 40 90 4.41 0.3689 WVFGRD96 114.0 260 40 90 4.41 0.3666 WVFGRD96 115.0 80 50 90 4.41 0.3650 WVFGRD96 116.0 260 40 90 4.41 0.3629 WVFGRD96 117.0 80 50 90 4.41 0.3606 WVFGRD96 118.0 80 50 90 4.41 0.3591 WVFGRD96 119.0 255 40 85 4.42 0.3571 WVFGRD96 120.0 255 40 85 4.42 0.3550 WVFGRD96 121.0 255 40 85 4.42 0.3532 WVFGRD96 122.0 255 40 85 4.42 0.3510 WVFGRD96 123.0 250 40 80 4.42 0.3491 WVFGRD96 124.0 250 40 80 4.42 0.3471 WVFGRD96 125.0 245 40 75 4.43 0.3449 WVFGRD96 126.0 245 40 75 4.43 0.3432 WVFGRD96 127.0 245 40 75 4.43 0.3410 WVFGRD96 128.0 240 40 70 4.44 0.3390 WVFGRD96 129.0 240 40 70 4.44 0.3374 WVFGRD96 130.0 240 40 70 4.44 0.3353 WVFGRD96 131.0 240 40 70 4.44 0.3334 WVFGRD96 132.0 235 40 65 4.45 0.3312 WVFGRD96 133.0 235 40 65 4.45 0.3299 WVFGRD96 134.0 235 40 65 4.45 0.3281 WVFGRD96 135.0 235 40 65 4.45 0.3260 WVFGRD96 136.0 235 40 60 4.46 0.3250 WVFGRD96 137.0 235 40 60 4.46 0.3230 WVFGRD96 138.0 235 40 60 4.46 0.3216 WVFGRD96 139.0 235 40 60 4.46 0.3204
The best solution is
WVFGRD96 70.0 55 45 50 4.31 0.4338
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: