2008/09/06 19:48:03 45.8560 26.4780 31.0 4.70 ROMANIA
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution 2008/09/06 19:48:03 45.8560 26.4780 31.0 4.70 ROMANIA Best Fitting Double Couple Mo = 2.09e+22 dyne-cm Mw = 4.18 Z = 14 km Plane Strike Dip Rake NP1 337 80 107 NP2 95 20 30 Principal Axes: Axis Value Plunge Azimuth T 2.09e+22 52 267 N 0.00e+00 17 153 P -2.09e+22 33 52 Moment Tensor: (dyne-cm) Component Value Mxx -5.59e+21 Mxy -6.68e+21 Mxz -6.49e+21 Myy -1.13e+21 Myz -1.76e+22 Mzz 6.71e+21 -------------- ####------------------ ########-------------------- ###########------------------- ##############-------------------- ################------------ ----- ##################----------- P ------ ####################---------- ------- #####################------------------- #######################------------------- ########## ##########------------------- -######### T ###########------------------ -######### ############----------------# -########################--------------- --#######################--------------# --#######################------------# ---#####################----------## ----####################-------### ----##################----#### -------##############-###### -------------------### -------------- Harvard Convention Moment Tensor: R T F 6.71e+21 -6.49e+21 1.76e+22 -6.49e+21 -5.59e+21 6.68e+21 1.76e+22 6.68e+21 -1.13e+21 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20080906194803/index.html |
STK = 95 DIP = 20 RAKE = 30 MW = 4.18 HS = 14.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution 2008/09/06 19:48:03 45.8560 26.4780 31.0 4.70 ROMANIA Best Fitting Double Couple Mo = 2.09e+22 dyne-cm Mw = 4.18 Z = 14 km Plane Strike Dip Rake NP1 337 80 107 NP2 95 20 30 Principal Axes: Axis Value Plunge Azimuth T 2.09e+22 52 267 N 0.00e+00 17 153 P -2.09e+22 33 52 Moment Tensor: (dyne-cm) Component Value Mxx -5.59e+21 Mxy -6.68e+21 Mxz -6.49e+21 Myy -1.13e+21 Myz -1.76e+22 Mzz 6.71e+21 -------------- ####------------------ ########-------------------- ###########------------------- ##############-------------------- ################------------ ----- ##################----------- P ------ ####################---------- ------- #####################------------------- #######################------------------- ########## ##########------------------- -######### T ###########------------------ -######### ############----------------# -########################--------------- --#######################--------------# --#######################------------# ---#####################----------## ----####################-------### ----##################----#### -------##############-###### -------------------### -------------- Harvard Convention Moment Tensor: R T F 6.71e+21 -6.49e+21 1.76e+22 -6.49e+21 -5.59e+21 6.68e+21 1.76e+22 6.68e+21 -1.13e+21 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20080906194803/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 95 60 30 3.88 0.3367 WVFGRD96 1.0 90 75 15 3.91 0.3360 WVFGRD96 2.0 95 65 30 3.99 0.3693 WVFGRD96 3.0 90 65 -15 4.07 0.3649 WVFGRD96 4.0 80 5 15 4.16 0.4298 WVFGRD96 5.0 75 10 5 4.16 0.5424 WVFGRD96 6.0 80 10 15 4.15 0.6199 WVFGRD96 7.0 85 10 20 4.14 0.6736 WVFGRD96 8.0 85 10 20 4.21 0.7088 WVFGRD96 9.0 85 10 20 4.20 0.7424 WVFGRD96 10.0 95 15 30 4.19 0.7649 WVFGRD96 11.0 95 15 30 4.19 0.7808 WVFGRD96 12.0 95 15 30 4.18 0.7880 WVFGRD96 13.0 95 20 30 4.18 0.7913 WVFGRD96 14.0 95 20 30 4.18 0.7914 WVFGRD96 15.0 105 20 50 4.17 0.7885 WVFGRD96 16.0 105 20 50 4.17 0.7840 WVFGRD96 17.0 295 75 85 4.18 0.7785 WVFGRD96 18.0 125 20 95 4.18 0.7700 WVFGRD96 19.0 125 20 95 4.18 0.7619 WVFGRD96 20.0 300 70 90 4.18 0.7508 WVFGRD96 21.0 120 15 95 4.19 0.7412 WVFGRD96 22.0 120 15 95 4.19 0.7292 WVFGRD96 23.0 120 15 95 4.19 0.7168 WVFGRD96 24.0 115 15 90 4.20 0.7047 WVFGRD96 25.0 110 15 85 4.20 0.6919 WVFGRD96 26.0 110 15 85 4.20 0.6794 WVFGRD96 27.0 110 15 85 4.20 0.6668 WVFGRD96 28.0 110 15 85 4.20 0.6538 WVFGRD96 29.0 110 15 80 4.20 0.6407 WVFGRD96 30.0 100 15 70 4.20 0.6281 WVFGRD96 31.0 105 15 75 4.20 0.6162 WVFGRD96 32.0 105 15 75 4.21 0.6038 WVFGRD96 33.0 110 15 80 4.21 0.5913 WVFGRD96 34.0 100 15 70 4.21 0.5802 WVFGRD96 35.0 85 70 25 4.37 0.5701 WVFGRD96 36.0 85 70 20 4.37 0.5691 WVFGRD96 37.0 85 70 20 4.39 0.5674 WVFGRD96 38.0 85 75 15 4.41 0.5637 WVFGRD96 39.0 85 75 15 4.43 0.5589 WVFGRD96 40.0 90 60 30 4.46 0.5623 WVFGRD96 41.0 90 60 30 4.47 0.5560 WVFGRD96 42.0 90 60 25 4.47 0.5501 WVFGRD96 43.0 85 70 20 4.49 0.5442 WVFGRD96 44.0 85 65 20 4.48 0.5379 WVFGRD96 45.0 85 65 20 4.49 0.5321 WVFGRD96 46.0 85 65 20 4.50 0.5272 WVFGRD96 47.0 85 65 20 4.50 0.5212 WVFGRD96 48.0 85 65 20 4.51 0.5152 WVFGRD96 49.0 85 65 20 4.52 0.5092 WVFGRD96 50.0 85 65 20 4.52 0.5027
The best solution is
WVFGRD96 14.0 95 20 30 4.18 0.7914
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Sep 6 16:14:45 MDT 2008