2007/08/12 07:47:05 39.3743 -2.9894 16 4.70 Spain
USGS/SLU Moment Tensor Solution ENS 2007/08/12 07:47:05:0 39.37 -2.99 16.0 4.7 Spain Stations used: CA.CMAS ES.EADA ES.EBAD ES.EBEN ES.EBER ES.ECAL ES.EMIN ES.EMOS ES.EMUR ES.EQES ES.EQTA ES.ERTA ES.ESAC ES.ESBB ES.ETOB IB.E020 IB.E025 IB.EHUE IB.ELOJ IB.ELUQ IG.ACBG IG.ACLR IG.ANER IG.ARAC IG.ASCB IG.ESTP IG.GORA IG.HORN IG.JAND IG.ROMA IG.SELV IG.SESP IG.XIII PM.MVO PM.PESTR PM.PMRV Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.11e+23 dyne-cm Mw = 4.63 Z = 11 km Plane Strike Dip Rake NP1 245 85 175 NP2 335 85 5 Principal Axes: Axis Value Plunge Azimuth T 1.11e+23 7 200 N 0.00e+00 83 20 P -1.11e+23 0 290 Moment Tensor: (dyne-cm) Component Value Mxx 8.40e+22 Mxy 7.01e+22 Mxz -1.28e+22 Myy -8.57e+22 Myz -4.56e+21 Mzz 1.68e+21 ############## ---################### -------##################### ---------##################### ------------###################### --------------###################### ---------------####################-- P ----------------##############-------- -----------------########------------- ---------------------###------------------ --------------------##-------------------- ----------------#######------------------- -------------###########------------------ --------###############----------------- -----###################---------------- -#######################-------------- ########################------------ ########################---------- ######################-------- ###### #############------ ### T #############--- ############ Global CMT Convention Moment Tensor: R T P 1.68e+21 -1.28e+22 4.56e+21 -1.28e+22 8.40e+22 -7.01e+22 4.56e+21 -7.01e+22 -8.57e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20070812074705/index.html |
STK = 335 DIP = 85 RAKE = 5 MW = 4.63 HS = 11.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2007/08/12 07:47:05:0 39.37 -2.99 16.0 4.7 Spain Stations used: CA.CMAS ES.EADA ES.EBAD ES.EBEN ES.EBER ES.ECAL ES.EMIN ES.EMOS ES.EMUR ES.EQES ES.EQTA ES.ERTA ES.ESAC ES.ESBB ES.ETOB IB.E020 IB.E025 IB.EHUE IB.ELOJ IB.ELUQ IG.ACBG IG.ACLR IG.ANER IG.ARAC IG.ASCB IG.ESTP IG.GORA IG.HORN IG.JAND IG.ROMA IG.SELV IG.SESP IG.XIII PM.MVO PM.PESTR PM.PMRV Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.11e+23 dyne-cm Mw = 4.63 Z = 11 km Plane Strike Dip Rake NP1 245 85 175 NP2 335 85 5 Principal Axes: Axis Value Plunge Azimuth T 1.11e+23 7 200 N 0.00e+00 83 20 P -1.11e+23 0 290 Moment Tensor: (dyne-cm) Component Value Mxx 8.40e+22 Mxy 7.01e+22 Mxz -1.28e+22 Myy -8.57e+22 Myz -4.56e+21 Mzz 1.68e+21 ############## ---################### -------##################### ---------##################### ------------###################### --------------###################### ---------------####################-- P ----------------##############-------- -----------------########------------- ---------------------###------------------ --------------------##-------------------- ----------------#######------------------- -------------###########------------------ --------###############----------------- -----###################---------------- -#######################-------------- ########################------------ ########################---------- ######################-------- ###### #############------ ### T #############--- ############ Global CMT Convention Moment Tensor: R T P 1.68e+21 -1.28e+22 4.56e+21 -1.28e+22 8.40e+22 -7.01e+22 4.56e+21 -7.01e+22 -8.57e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20070812074705/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 155 90 10 4.23 0.3213 WVFGRD96 1.0 335 85 -5 4.27 0.3549 WVFGRD96 2.0 155 90 5 4.36 0.4500 WVFGRD96 3.0 335 85 -5 4.42 0.5155 WVFGRD96 4.0 335 85 -5 4.46 0.5638 WVFGRD96 5.0 335 90 5 4.49 0.6009 WVFGRD96 6.0 335 85 5 4.52 0.6335 WVFGRD96 7.0 335 85 5 4.55 0.6640 WVFGRD96 8.0 335 85 5 4.58 0.6911 WVFGRD96 9.0 335 85 5 4.60 0.7094 WVFGRD96 10.0 335 85 5 4.62 0.7193 WVFGRD96 11.0 335 85 5 4.63 0.7214 WVFGRD96 12.0 335 85 5 4.64 0.7168 WVFGRD96 13.0 335 85 5 4.65 0.7076 WVFGRD96 14.0 155 90 -5 4.66 0.6915 WVFGRD96 15.0 155 90 -5 4.67 0.6745 WVFGRD96 16.0 335 85 5 4.67 0.6586 WVFGRD96 17.0 335 90 -5 4.68 0.6436 WVFGRD96 18.0 335 90 -5 4.68 0.6280 WVFGRD96 19.0 155 90 5 4.69 0.6111 WVFGRD96 20.0 335 90 -5 4.69 0.5931 WVFGRD96 21.0 155 90 5 4.70 0.5745 WVFGRD96 22.0 155 90 5 4.70 0.5548 WVFGRD96 23.0 155 90 5 4.71 0.5351 WVFGRD96 24.0 335 90 -10 4.71 0.5155 WVFGRD96 25.0 155 90 10 4.71 0.4959 WVFGRD96 26.0 155 90 10 4.72 0.4768 WVFGRD96 27.0 155 90 10 4.72 0.4579 WVFGRD96 28.0 155 90 10 4.72 0.4397 WVFGRD96 29.0 335 90 -10 4.73 0.4220
The best solution is
WVFGRD96 11.0 335 85 5 4.63 0.7214
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: