2005/05/21 19:55:19 40.99N 14.51E 16 3.7 Italy
USGS Felt map for this earthquake
USGS Felt reports page for Intermountain Western US
SLU Moment Tensor Solution 2005/05/21 19:55:19 40.99N 14.51E 16 3.7 Italy Best Fitting Double Couple Mo = 2.37e+21 dyne-cm Mw = 3.55 Z = 2 km Plane Strike Dip Rake NP1 100 50 -90 NP2 280 40 -90 Principal Axes: Axis Value Plunge Azimuth T 2.37e+21 5 190 N 0.00e+00 -0 280 P -2.37e+21 85 10 Moment Tensor: (dyne-cm) Component Value Mxx 2.26e+21 Mxy 3.99e+20 Mxz -4.06e+20 Myy 7.04e+19 Myz -7.15e+19 Mzz -2.34e+21 ############## ###################### ############################ ############################## #########-----------############## #####----------------------######### ###----------------------------####### ##--------------------------------###### ------------------- --------------#### #------------------- P ----------------### ##------------------ -----------------## ###--------------------------------------# #####------------------------------------# ######---------------------------------# #########----------------------------### ############---------------------##### ##################-------########### ################################## ############################## ############################ ###### ############# ## T ######### Harvard Convention Moment Tensor: R T F -2.34e+21 -4.06e+20 7.15e+19 -4.06e+20 2.26e+21 -3.99e+20 7.15e+19 -3.99e+20 7.04e+19 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/NEW/20050521195519/index.html |
![]() ![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the station distribution are given in Figure 1.
![]() |
|
STK = 100 DIP = 50 RAKE = -90 MW = 3.55 HS = 2
The solution given here is from waveform inversion of regional vaeforms from the INGV digital seismic stations.
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 3 lp c 0.05 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 270 55 -90 3.48 0.3045 WVFGRD96 1.0 270 50 -90 3.49 0.2888 WVFGRD96 2.0 100 50 -90 3.55 0.3062 WVFGRD96 3.0 285 25 -75 3.63 0.2732 WVFGRD96 4.0 280 20 -80 3.67 0.2862 WVFGRD96 5.0 275 20 -85 3.68 0.2962 WVFGRD96 6.0 95 70 -85 3.68 0.2959 WVFGRD96 7.0 95 70 -85 3.68 0.2902 WVFGRD96 8.0 95 70 -85 3.70 0.2839 WVFGRD96 9.0 95 70 -85 3.69 0.2711 WVFGRD96 10.0 105 75 -75 3.67 0.2585 WVFGRD96 11.0 110 80 -70 3.66 0.2486 WVFGRD96 12.0 300 90 65 3.65 0.2438 WVFGRD96 13.0 310 80 60 3.66 0.2430 WVFGRD96 14.0 315 75 60 3.66 0.2431 WVFGRD96 15.0 315 75 60 3.66 0.2431 WVFGRD96 16.0 320 70 60 3.66 0.2432 WVFGRD96 17.0 325 65 65 3.67 0.2429 WVFGRD96 18.0 325 65 60 3.67 0.2422 WVFGRD96 19.0 320 65 60 3.67 0.1358 WVFGRD96 20.0 320 65 60 3.66 0.1351 WVFGRD96 21.0 320 65 65 3.72 0.2324 WVFGRD96 22.0 325 60 65 3.73 0.2318 WVFGRD96 23.0 325 60 65 3.73 0.2309 WVFGRD96 24.0 335 55 70 3.73 0.2300 WVFGRD96 25.0 330 55 70 3.74 0.2291 WVFGRD96 26.0 330 55 70 3.74 0.2282 WVFGRD96 27.0 330 55 70 3.74 0.2278 WVFGRD96 28.0 340 50 75 3.75 0.2273 WVFGRD96 29.0 335 50 75 3.76 0.2280 WVFGRD96 30.0 335 50 75 3.76 0.2287
The best solution is
WVFGRD96 2.0 100 50 -90 3.55 0.3062
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 3 lp c 0.05 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The P-wave first motion data for focal mechanism studies are as follow:
Sta Az(deg) Dist(km) First motion PSB1 43 36 eP_+ MRB1 68 40 iP_C SACR 19 48 eP_X VAGA 333 53 iP_D SNAL 97 58 iP_C BSSO 6 62 iP_D MIDA 343 76 eP_- CII 348 83 eP_+ RNI2 339 85 eP_- MRLC 107 86 eP_X TRIV 2 86 eP_X FRES 6 110 eP_X INTR 336 125 eP_X CUC 135 156 eP_+ CERT 310 167 iP_D AQU 329 178 eP_X FIAM 321 184 eP_D TERO 338 197 iP_D TOLF 300 242 eP_X TIP 136 277 eP_X CING 338 287 eP_+ SACS 315 299 eP_X MURB 327 302 eP_X CEL 158 325 eP_X ARCI 310 327 eP_X
The follwoing stations were not used because of excessive low frequency noise in the deconvolved waveforms: AMUR, GIUL, RNI2, SNAL, TRIV