2004/10/20 06:59:18 52.90 9.60 0 4.5 Germany
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2004/10/20 06:59:18:0 52.90 9.60 0.0 4.5 Germany Stations used: CH.BALST CH.SLE CH.SULZ CH.WILA CH.ZUR CZ.KHC CZ.NKC G.ECH GE.IBBN GE.WLF GR.BRG GR.BSEG GR.BUG GR.CLL GR.CLZ GR.FUR GR.GEC2 GR.MOX GR.NRDL GR.UBBA GR.WET II.BFO IU.GRFO NL.HGN NL.WTSB OE.MOA OE.WTTA SX.TANN Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 15 km Plane Strike Dip Rake NP1 130 70 -25 NP2 229 67 -158 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 2 180 N 0.00e+00 58 274 P -3.31e+22 32 89 Moment Tensor: (dyne-cm) Component Value Mxx 3.31e+22 Mxy -4.68e+20 Mxz -1.61e+21 Myy -2.41e+22 Myz -1.48e+22 Mzz -9.00e+21 ############## ###################### ############################ ############################## -########################--------- ---###################-------------- -----###############------------------ -------############--------------------- ---------#######------------------------ -----------####------------------- ----- ---------------------------------- P ----- ------------##-------------------- ----- ----------######-------------------------- --------##########---------------------- -------#############-------------------- -----#################---------------- ---#####################------------ --#########################------- ############################## ############################ ######### ########## ##### T ###### Global CMT Convention Moment Tensor: R T P -9.00e+21 -1.61e+21 1.48e+22 -1.61e+21 3.31e+22 4.68e+20 1.48e+22 4.68e+20 -2.41e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20041020065918/index.html |
STK = 130 DIP = 70 RAKE = -25 MW = 4.28 HS = 15.0
The NDK file is 20041020065918.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2004/10/20 06:59:18:0 52.90 9.60 0.0 4.5 Germany Stations used: CH.BALST CH.SLE CH.SULZ CH.WILA CH.ZUR CZ.KHC CZ.NKC G.ECH GE.IBBN GE.WLF GR.BRG GR.BSEG GR.BUG GR.CLL GR.CLZ GR.FUR GR.GEC2 GR.MOX GR.NRDL GR.UBBA GR.WET II.BFO IU.GRFO NL.HGN NL.WTSB OE.MOA OE.WTTA SX.TANN Filtering commands used: cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 15 km Plane Strike Dip Rake NP1 130 70 -25 NP2 229 67 -158 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 2 180 N 0.00e+00 58 274 P -3.31e+22 32 89 Moment Tensor: (dyne-cm) Component Value Mxx 3.31e+22 Mxy -4.68e+20 Mxz -1.61e+21 Myy -2.41e+22 Myz -1.48e+22 Mzz -9.00e+21 ############## ###################### ############################ ############################## -########################--------- ---###################-------------- -----###############------------------ -------############--------------------- ---------#######------------------------ -----------####------------------- ----- ---------------------------------- P ----- ------------##-------------------- ----- ----------######-------------------------- --------##########---------------------- -------#############-------------------- -----#################---------------- ---#####################------------ --#########################------- ############################## ############################ ######### ########## ##### T ###### Global CMT Convention Moment Tensor: R T P -9.00e+21 -1.61e+21 1.48e+22 -1.61e+21 3.31e+22 4.68e+20 1.48e+22 4.68e+20 -2.41e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20041020065918/index.html |
Cesca et al 2010 JGR Vol 115 B06304 do1:10.1029/JB006450 ENS 2004/10/20 06:59:18:0 53.01 9.63 6.3 4.5 Rotenburg, Germany Best Fitting Double Couple Mo = 5.01e+22 dyne-cm Mw = 4.40 Z = 6 km Plane Strike Dip Rake NP1 328 67 -126 NP2 210 42 -36 Principal Axes: Axis Value Plunge Azimuth T 5.01e+22 14 84 N 0.00e+00 33 344 P -5.01e+22 53 194 Moment Tensor: (dyne-cm) Component Value Mxx -1.62e+22 Mxy 8.79e+20 Mxz 2.46e+22 Myy 4.55e+22 Myz 1.77e+22 Mzz -2.93e+22 -------------- ---------------####### #######-------############## ###########-################## ###########----################### ###########-------################## ##########----------################## ##########-------------################# #########---------------############ # #########-----------------########### T ## ########-------------------########## ## ########--------------------############## #######----------------------############# ######-----------------------########### ######---------- -----------########## #####---------- P -----------######### ####---------- ------------####### ####------------------------###### ##------------------------#### ##-----------------------### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -2.93e+22 2.46e+22 -1.77e+22 2.46e+22 -1.62e+22 -8.79e+20 -1.77e+22 -8.79e+20 4.55e+22 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 140 65 20 3.95 0.1964 WVFGRD96 2.0 145 55 30 4.08 0.2551 WVFGRD96 3.0 140 65 30 4.10 0.2905 WVFGRD96 4.0 140 65 35 4.14 0.3142 WVFGRD96 5.0 140 65 30 4.15 0.3374 WVFGRD96 6.0 140 65 30 4.17 0.3470 WVFGRD96 7.0 140 70 30 4.18 0.3580 WVFGRD96 8.0 140 70 30 4.21 0.3711 WVFGRD96 9.0 140 70 30 4.22 0.3742 WVFGRD96 10.0 130 70 -30 4.23 0.3737 WVFGRD96 11.0 130 70 -30 4.24 0.3874 WVFGRD96 12.0 130 70 -30 4.25 0.3943 WVFGRD96 13.0 130 70 -25 4.26 0.3987 WVFGRD96 14.0 130 70 -25 4.27 0.4032 WVFGRD96 15.0 130 70 -25 4.28 0.4032 WVFGRD96 16.0 135 75 -20 4.28 0.4031 WVFGRD96 17.0 135 75 -20 4.28 0.4010 WVFGRD96 18.0 135 75 -20 4.29 0.3974 WVFGRD96 19.0 135 75 -20 4.30 0.3928 WVFGRD96 20.0 135 75 -20 4.30 0.3869 WVFGRD96 21.0 135 75 -20 4.31 0.3806 WVFGRD96 22.0 135 75 -15 4.31 0.3736 WVFGRD96 23.0 135 75 -15 4.32 0.3662 WVFGRD96 24.0 135 80 -15 4.32 0.3586 WVFGRD96 25.0 135 80 -15 4.33 0.3504 WVFGRD96 26.0 135 80 -15 4.33 0.3419 WVFGRD96 27.0 135 80 -10 4.34 0.3333 WVFGRD96 28.0 135 80 -10 4.35 0.3278 WVFGRD96 29.0 135 80 -10 4.35 0.3193
The best solution is
WVFGRD96 15.0 130 70 -25 4.28 0.4032
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 210 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Jul 3 03:25:58 CDT 2014