2004/02/23 17:31:20 47.30 6.21 10 4.6 France
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2004/02/23 17:31:20:0 47.30 6.21 10.0 4.6 France Stations used: CH.AIGLE CH.BALST CH.BERNI CH.BNALP CH.BOURR CH.BRANT CH.DAVOX CH.DIX CH.EMV CH.FUORN CH.FUSIO CH.GIMEL CH.GUT CH.HASLI CH.LLS CH.MMK CH.MUO CH.PLONS CH.SENIN CH.SLE CH.SULZ CH.TORNY CH.WILA CH.WIMIS CH.ZUR G.ECH GE.STU GR.BFO GR.FUR GR.MOX GR.UBBA GR.WET IU.GRFO MN.TUE NL.WTSB OE.WTTA SX.TANN Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.045 0.055 n 4 p 2 Best Fitting Double Couple Mo = 4.84e+22 dyne-cm Mw = 4.39 Z = 15 km Plane Strike Dip Rake NP1 298 69 131 NP2 50 45 30 Principal Axes: Axis Value Plunge Azimuth T 4.84e+22 49 252 N 0.00e+00 38 101 P -4.84e+22 14 359 Moment Tensor: (dyne-cm) Component Value Mxx -4.34e+22 Mxy 6.77e+21 Mxz -1.91e+22 Myy 1.92e+22 Myz -2.27e+22 Mzz 2.42e+22 ----- ------ --------- P ---------- ------------ ------------- ------------------------------ ---------------------------------# ----------------------------------## #############----------------------### ###################-----------------#### #######################-------------#### ###########################---------###### ##############################------###### ########## ###################---####### ########## T ####################-######## ######### ###################----##### #############################-------#### ###########################----------# #######################------------- ###################--------------- #############----------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.42e+22 -1.91e+22 2.27e+22 -1.91e+22 -4.34e+22 -6.77e+21 2.27e+22 -6.77e+21 1.92e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20040223173120/index.html |
STK = 50 DIP = 45 RAKE = 30 MW = 4.39 HS = 15.0
The NDK file is 20040223173120.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2004/02/23 17:31:20:0 47.30 6.21 10.0 4.6 France Stations used: CH.AIGLE CH.BALST CH.BERNI CH.BNALP CH.BOURR CH.BRANT CH.DAVOX CH.DIX CH.EMV CH.FUORN CH.FUSIO CH.GIMEL CH.GUT CH.HASLI CH.LLS CH.MMK CH.MUO CH.PLONS CH.SENIN CH.SLE CH.SULZ CH.TORNY CH.WILA CH.WIMIS CH.ZUR G.ECH GE.STU GR.BFO GR.FUR GR.MOX GR.UBBA GR.WET IU.GRFO MN.TUE NL.WTSB OE.WTTA SX.TANN Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.045 0.055 n 4 p 2 Best Fitting Double Couple Mo = 4.84e+22 dyne-cm Mw = 4.39 Z = 15 km Plane Strike Dip Rake NP1 298 69 131 NP2 50 45 30 Principal Axes: Axis Value Plunge Azimuth T 4.84e+22 49 252 N 0.00e+00 38 101 P -4.84e+22 14 359 Moment Tensor: (dyne-cm) Component Value Mxx -4.34e+22 Mxy 6.77e+21 Mxz -1.91e+22 Myy 1.92e+22 Myz -2.27e+22 Mzz 2.42e+22 ----- ------ --------- P ---------- ------------ ------------- ------------------------------ ---------------------------------# ----------------------------------## #############----------------------### ###################-----------------#### #######################-------------#### ###########################---------###### ##############################------###### ########## ###################---####### ########## T ####################-######## ######### ###################----##### #############################-------#### ###########################----------# #######################------------- ###################--------------- #############----------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.42e+22 -1.91e+22 2.27e+22 -1.91e+22 -4.34e+22 -6.77e+21 2.27e+22 -6.77e+21 1.92e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20040223173120/index.html |
Cesca et al 2010 JGR Vol 115 B06304 do1:10.1029/JB006450 ENS 2004/02/23 17:31:20:0 47.30 6.21 10.0 4.6 Besancon, France Best Fitting Double Couple Mo = 3.55e+22 dyne-cm Mw = 4.30 Z = 12 km Plane Strike Dip Rake NP1 322 72 120 NP2 80 35 33 Principal Axes: Axis Value Plunge Azimuth T 3.55e+22 53 269 N 0.00e+00 29 132 P -3.55e+22 21 29 Moment Tensor: (dyne-cm) Component Value Mxx -2.34e+22 Mxy -1.29e+22 Mxz -1.07e+22 Myy 5.29e+21 Myz -2.29e+22 Mzz 1.82e+22 -------------- ---------------------- ###------------------ ---- #######--------------- P ----- ############------------ ------- ###############--------------------- ##################-------------------- #####################------------------- ######################------------------ #########################----------------# ########## #############---------------# ########## T ##############-------------## ########## ################----------### #############################--------### --############################-----##### --############################--###### ----################################ ------##################-----##### ---------------------------### ---------------------------# ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.82e+22 -1.07e+22 2.29e+22 -1.07e+22 -2.34e+22 1.29e+22 2.29e+22 1.29e+22 5.29e+21 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.045 0.055 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 5 45 -90 3.87 0.2298 WVFGRD96 2.0 185 45 -90 4.02 0.3125 WVFGRD96 3.0 20 60 -50 4.05 0.3049 WVFGRD96 4.0 40 80 -55 4.08 0.3306 WVFGRD96 5.0 40 25 5 4.12 0.3796 WVFGRD96 6.0 45 30 15 4.14 0.4311 WVFGRD96 7.0 50 30 20 4.16 0.4732 WVFGRD96 8.0 55 30 30 4.25 0.5049 WVFGRD96 9.0 55 35 30 4.27 0.5427 WVFGRD96 10.0 55 40 35 4.29 0.5756 WVFGRD96 11.0 55 40 35 4.32 0.6024 WVFGRD96 12.0 55 40 35 4.34 0.6218 WVFGRD96 13.0 55 40 35 4.35 0.6348 WVFGRD96 14.0 50 45 30 4.37 0.6424 WVFGRD96 15.0 50 45 30 4.39 0.6454 WVFGRD96 16.0 50 45 30 4.40 0.6440 WVFGRD96 17.0 50 40 25 4.41 0.6386 WVFGRD96 18.0 50 40 25 4.43 0.6309 WVFGRD96 19.0 50 40 25 4.44 0.6197 WVFGRD96 20.0 50 40 25 4.45 0.6056 WVFGRD96 21.0 50 35 25 4.47 0.5890 WVFGRD96 22.0 50 35 25 4.48 0.5710 WVFGRD96 23.0 45 35 15 4.48 0.5514 WVFGRD96 24.0 45 35 15 4.49 0.5308 WVFGRD96 25.0 45 30 15 4.50 0.5087 WVFGRD96 26.0 45 30 15 4.50 0.4887 WVFGRD96 27.0 40 30 10 4.51 0.4673 WVFGRD96 28.0 40 30 10 4.51 0.4478 WVFGRD96 29.0 35 30 5 4.52 0.4290
The best solution is
WVFGRD96 15.0 50 45 30 4.39 0.6454
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.045 0.055 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Jul 3 05:28:38 CDT 2014