Location

2014/04/19 20:54:42 -20.021 -70.913 9.0 5.8 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/19 20:54:42:0 -20.02  -70.91   9.0 5.8 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 
   CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 
   CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.89e+24 dyne-cm
  Mw = 5.66 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      150    65    70
   NP2       11    32   126
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.89e+24     64      26
    N   0.00e+00     18     159
    P  -3.89e+24     18     255

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.44e+23
       Mxy    -6.10e+23
       Mxz     1.66e+24
       Myy    -3.14e+24
       Myz     1.75e+24
       Mzz     2.80e+24
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 -##################---              
              ---#####################----           
             ----######################----          
           ------#######################-----        
          --------#######################-----       
         ---------############   #########-----      
        ----------############ T #########------     
        -----------###########   #########------     
       -------------######################-------    
       -------------######################-------    
       --------------#####################-------    
       ---   ---------####################-------    
        -- P ----------###################------     
        --   ------------################-------     
         -----------------##############-------      
          -----------------############-------       
           ------------------#########-------        
             ------------------######------          
              --------------------#-------           
                 ---------------#####--              
                     -------#######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.80e+24   1.66e+24  -1.75e+24 
  1.66e+24   3.44e+23   6.10e+23 
 -1.75e+24   6.10e+23  -3.14e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140419205442/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 150
      DIP = 65
     RAKE = 70
       MW = 5.66
       HS = 18.0

The NDK file is 20140419205442.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
GCMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/19 20:54:42:0 -20.02  -70.91   9.0 5.8 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 
   CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 
   CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.89e+24 dyne-cm
  Mw = 5.66 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      150    65    70
   NP2       11    32   126
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.89e+24     64      26
    N   0.00e+00     18     159
    P  -3.89e+24     18     255

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.44e+23
       Mxy    -6.10e+23
       Mxz     1.66e+24
       Myy    -3.14e+24
       Myz     1.75e+24
       Mzz     2.80e+24
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 -##################---              
              ---#####################----           
             ----######################----          
           ------#######################-----        
          --------#######################-----       
         ---------############   #########-----      
        ----------############ T #########------     
        -----------###########   #########------     
       -------------######################-------    
       -------------######################-------    
       --------------#####################-------    
       ---   ---------####################-------    
        -- P ----------###################------     
        --   ------------################-------     
         -----------------##############-------      
          -----------------############-------       
           ------------------#########-------        
             ------------------######------          
              --------------------#-------           
                 ---------------#####--              
                     -------#######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.80e+24   1.66e+24  -1.75e+24 
  1.66e+24   3.44e+23   6.10e+23 
 -1.75e+24   6.10e+23  -3.14e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140419205442/index.html
	
Moment magnitude derived from a moment 
tensor inversion of complete waveforms at 
regional distances (less than ~8 degrees), 
generally used for the analysis of small 
to moderate size earthquakes (typically 
Mw 3.5-6.0) crust or upper mantle earthquakes.

Moment
    5.36e+17 N-m
Magnitude
    5.8
Percent DC
    85%
Depth
    8.0 km
Updated
    2014-04-19 21:31:16 UTC
Author
    us
Catalog
    us
Contributor
    us
Code
    us_b000prk0_mwr

Principal Axes
Axis	Value	Plunge	Azimuth
T	5.168	51	76
N	0.370	6	338
P	-5.538	39	243
Nodal Planes
Plane	Strike	Dip	Rake
NP1	159	84	96
NP2	293	9	45

        
April 19, 2014, NEAR COAST OF NORTHERN CHILE, MW=5.8

Goran Ekstrom

CENTROID-MOMENT-TENSOR  SOLUTION
GCMT EVENT:     C201404192054A
DATA: II IU MN IC G  LD DK CU GE
 KP
L.P.BODY WAVES: 59S,  77C, T= 40
SURFACE WAVES: 124S, 202C, T= 50
TIMESTAMP:      Q-20140420094752
CENTROID LOCATION:
ORIGIN TIME:      20:54:48.7 0.2
LAT:19.96S 0.02;LON: 71.33W 0.02
DEP: 19.5  0.9;TRIANG HDUR:  2.0
MOMENT TENSOR: SCALE 10**24 D-CM
RR= 5.290 0.212; TT=-0.692 0.114
PP=-4.600 0.150; RT= 0.787 0.251
RP=-4.970 0.348; TP= 1.540 0.078
PRINCIPAL AXES:
1.(T) VAL=  7.358;PLG=68;AZM= 87
2.(N)      -0.232;     5;    346
3.(P)      -7.128;    22;    254
BEST DBLE.COUPLE:M0= 7.24*10**24
NP1: STRIKE=335;DIP=23;SLIP=  78
NP2: STRIKE=168;DIP=67;SLIP=  95

            ##---------
        -----########------
      -------###########-----
    --------##############-----
   ---------###############-----
  ----------#################----
  ----------#################----
 -----------#########   ######----
 ------------######## T #######---
 --   -------########   #######---
 -- P -------##################---
  -   --------#################--
  -------------###############---
   ------------###############--
    ------------#############--
      -----------###########-
        -----------#######-
            --------###
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   335    40   -95   5.43 0.3985
WVFGRD96    4.0   305    70    45   5.43 0.2658
WVFGRD96    6.0   155    85    75   5.49 0.3884
WVFGRD96    8.0   155    85    75   5.57 0.4687
WVFGRD96   10.0   155    80    75   5.59 0.5522
WVFGRD96   12.0   155    75    75   5.61 0.6178
WVFGRD96   14.0   155    70    75   5.63 0.6652
WVFGRD96   16.0   155    65    75   5.65 0.6917
WVFGRD96   18.0   150    65    70   5.66 0.7016
WVFGRD96   20.0   150    65    70   5.67 0.6988
WVFGRD96   22.0   150    65    70   5.69 0.6887
WVFGRD96   24.0   150    65    70   5.69 0.6682
WVFGRD96   26.0   145    70    65   5.70 0.6427
WVFGRD96   28.0   145    70    65   5.71 0.6122
WVFGRD96   30.0   145    70    65   5.72 0.5778
WVFGRD96   32.0   145    70    65   5.72 0.5404
WVFGRD96   34.0   145    70    65   5.73 0.5008
WVFGRD96   36.0   150    75    70   5.72 0.4630
WVFGRD96   38.0   155    80    75   5.71 0.4301
WVFGRD96   40.0   155    80    80   5.86 0.4068
WVFGRD96   42.0   155    80    80   5.85 0.3679
WVFGRD96   44.0   155    80    75   5.85 0.3337
WVFGRD96   46.0   155    80    75   5.85 0.3032
WVFGRD96   48.0   145    75    65   5.85 0.2775
WVFGRD96   50.0   145    75    65   5.85 0.2550
WVFGRD96   52.0   145    70    60   5.86 0.2356
WVFGRD96   54.0   145    70    60   5.86 0.2205
WVFGRD96   56.0   145    70    60   5.86 0.2079
WVFGRD96   58.0   140    70    55   5.87 0.1970
WVFGRD96   60.0   140    70    55   5.87 0.1875
WVFGRD96   62.0   140    70    55   5.88 0.1790
WVFGRD96   64.0   140    70    60   5.88 0.1718
WVFGRD96   66.0   140    70    60   5.89 0.1656
WVFGRD96   68.0   140    75    55   5.88 0.1609
WVFGRD96   70.0   140    75    55   5.88 0.1577
WVFGRD96   72.0   140    75    55   5.89 0.1549
WVFGRD96   74.0   140    75    60   5.90 0.1528
WVFGRD96   76.0   140    75    60   5.90 0.1509
WVFGRD96   78.0   145    70    65   5.91 0.1490
WVFGRD96   80.0   145    70    65   5.92 0.1492
WVFGRD96   82.0   145    70    65   5.92 0.1497
WVFGRD96   84.0   150    65    70   5.93 0.1499
WVFGRD96   86.0   155    65    80   5.94 0.1501
WVFGRD96   88.0   150    70    75   5.94 0.1516
WVFGRD96   90.0   150    70    75   5.95 0.1546
WVFGRD96   92.0   150    70    75   5.95 0.1558
WVFGRD96   94.0   355    20   110   5.97 0.1556
WVFGRD96   96.0   155    70    80   5.97 0.1590
WVFGRD96   98.0   355    20   110   5.98 0.1601
WVFGRD96  100.0   160    70    90   5.99 0.1627
WVFGRD96  102.0   165    75    95   6.00 0.1645
WVFGRD96  104.0   325    15    70   6.01 0.1671
WVFGRD96  106.0   325    15    70   6.02 0.1694
WVFGRD96  108.0   320    15    65   6.02 0.1739

The best solution is

WVFGRD96   18.0   150    65    70   5.66 0.7016

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Apr 20 10:21:50 CDT 2014