2014/04/19 20:54:42 -20.021 -70.913 9.0 5.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/19 20:54:42:0 -20.02 -70.91 9.0 5.8 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.89e+24 dyne-cm Mw = 5.66 Z = 18 km Plane Strike Dip Rake NP1 150 65 70 NP2 11 32 126 Principal Axes: Axis Value Plunge Azimuth T 3.89e+24 64 26 N 0.00e+00 18 159 P -3.89e+24 18 255 Moment Tensor: (dyne-cm) Component Value Mxx 3.44e+23 Mxy -6.10e+23 Mxz 1.66e+24 Myy -3.14e+24 Myz 1.75e+24 Mzz 2.80e+24 #############- -##################--- ---#####################---- ----######################---- ------#######################----- --------#######################----- ---------############ #########----- ----------############ T #########------ -----------########### #########------ -------------######################------- -------------######################------- --------------#####################------- --- ---------####################------- -- P ----------###################------ -- ------------################------- -----------------##############------- -----------------############------- ------------------#########------- ------------------######------ --------------------#------- ---------------#####-- -------####### Global CMT Convention Moment Tensor: R T P 2.80e+24 1.66e+24 -1.75e+24 1.66e+24 3.44e+23 6.10e+23 -1.75e+24 6.10e+23 -3.14e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140419205442/index.html |
STK = 150 DIP = 65 RAKE = 70 MW = 5.66 HS = 18.0
The NDK file is 20140419205442.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/19 20:54:42:0 -20.02 -70.91 9.0 5.8 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.89e+24 dyne-cm Mw = 5.66 Z = 18 km Plane Strike Dip Rake NP1 150 65 70 NP2 11 32 126 Principal Axes: Axis Value Plunge Azimuth T 3.89e+24 64 26 N 0.00e+00 18 159 P -3.89e+24 18 255 Moment Tensor: (dyne-cm) Component Value Mxx 3.44e+23 Mxy -6.10e+23 Mxz 1.66e+24 Myy -3.14e+24 Myz 1.75e+24 Mzz 2.80e+24 #############- -##################--- ---#####################---- ----######################---- ------#######################----- --------#######################----- ---------############ #########----- ----------############ T #########------ -----------########### #########------ -------------######################------- -------------######################------- --------------#####################------- --- ---------####################------- -- P ----------###################------ -- ------------################------- -----------------##############------- -----------------############------- ------------------#########------- ------------------######------ --------------------#------- ---------------#####-- -------####### Global CMT Convention Moment Tensor: R T P 2.80e+24 1.66e+24 -1.75e+24 1.66e+24 3.44e+23 6.10e+23 -1.75e+24 6.10e+23 -3.14e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140419205442/index.html |
Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 5.36e+17 N-m Magnitude 5.8 Percent DC 85% Depth 8.0 km Updated 2014-04-19 21:31:16 UTC Author us Catalog us Contributor us Code us_b000prk0_mwr Principal Axes Axis Value Plunge Azimuth T 5.168 51 76 N 0.370 6 338 P -5.538 39 243 Nodal Planes Plane Strike Dip Rake NP1 159 84 96 NP2 293 9 45 | April 19, 2014, NEAR COAST OF NORTHERN CHILE, MW=5.8 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201404192054A DATA: II IU MN IC G LD DK CU GE KP L.P.BODY WAVES: 59S, 77C, T= 40 SURFACE WAVES: 124S, 202C, T= 50 TIMESTAMP: Q-20140420094752 CENTROID LOCATION: ORIGIN TIME: 20:54:48.7 0.2 LAT:19.96S 0.02;LON: 71.33W 0.02 DEP: 19.5 0.9;TRIANG HDUR: 2.0 MOMENT TENSOR: SCALE 10**24 D-CM RR= 5.290 0.212; TT=-0.692 0.114 PP=-4.600 0.150; RT= 0.787 0.251 RP=-4.970 0.348; TP= 1.540 0.078 PRINCIPAL AXES: 1.(T) VAL= 7.358;PLG=68;AZM= 87 2.(N) -0.232; 5; 346 3.(P) -7.128; 22; 254 BEST DBLE.COUPLE:M0= 7.24*10**24 NP1: STRIKE=335;DIP=23;SLIP= 78 NP2: STRIKE=168;DIP=67;SLIP= 95 ##--------- -----########------ -------###########----- --------##############----- ---------###############----- ----------#################---- ----------#################---- -----------######### ######---- ------------######## T #######--- -- -------######## #######--- -- P -------##################--- - --------#################-- -------------###############--- ------------###############-- ------------#############-- -----------###########- -----------#######- --------### |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 335 40 -95 5.43 0.3985 WVFGRD96 4.0 305 70 45 5.43 0.2658 WVFGRD96 6.0 155 85 75 5.49 0.3884 WVFGRD96 8.0 155 85 75 5.57 0.4687 WVFGRD96 10.0 155 80 75 5.59 0.5522 WVFGRD96 12.0 155 75 75 5.61 0.6178 WVFGRD96 14.0 155 70 75 5.63 0.6652 WVFGRD96 16.0 155 65 75 5.65 0.6917 WVFGRD96 18.0 150 65 70 5.66 0.7016 WVFGRD96 20.0 150 65 70 5.67 0.6988 WVFGRD96 22.0 150 65 70 5.69 0.6887 WVFGRD96 24.0 150 65 70 5.69 0.6682 WVFGRD96 26.0 145 70 65 5.70 0.6427 WVFGRD96 28.0 145 70 65 5.71 0.6122 WVFGRD96 30.0 145 70 65 5.72 0.5778 WVFGRD96 32.0 145 70 65 5.72 0.5404 WVFGRD96 34.0 145 70 65 5.73 0.5008 WVFGRD96 36.0 150 75 70 5.72 0.4630 WVFGRD96 38.0 155 80 75 5.71 0.4301 WVFGRD96 40.0 155 80 80 5.86 0.4068 WVFGRD96 42.0 155 80 80 5.85 0.3679 WVFGRD96 44.0 155 80 75 5.85 0.3337 WVFGRD96 46.0 155 80 75 5.85 0.3032 WVFGRD96 48.0 145 75 65 5.85 0.2775 WVFGRD96 50.0 145 75 65 5.85 0.2550 WVFGRD96 52.0 145 70 60 5.86 0.2356 WVFGRD96 54.0 145 70 60 5.86 0.2205 WVFGRD96 56.0 145 70 60 5.86 0.2079 WVFGRD96 58.0 140 70 55 5.87 0.1970 WVFGRD96 60.0 140 70 55 5.87 0.1875 WVFGRD96 62.0 140 70 55 5.88 0.1790 WVFGRD96 64.0 140 70 60 5.88 0.1718 WVFGRD96 66.0 140 70 60 5.89 0.1656 WVFGRD96 68.0 140 75 55 5.88 0.1609 WVFGRD96 70.0 140 75 55 5.88 0.1577 WVFGRD96 72.0 140 75 55 5.89 0.1549 WVFGRD96 74.0 140 75 60 5.90 0.1528 WVFGRD96 76.0 140 75 60 5.90 0.1509 WVFGRD96 78.0 145 70 65 5.91 0.1490 WVFGRD96 80.0 145 70 65 5.92 0.1492 WVFGRD96 82.0 145 70 65 5.92 0.1497 WVFGRD96 84.0 150 65 70 5.93 0.1499 WVFGRD96 86.0 155 65 80 5.94 0.1501 WVFGRD96 88.0 150 70 75 5.94 0.1516 WVFGRD96 90.0 150 70 75 5.95 0.1546 WVFGRD96 92.0 150 70 75 5.95 0.1558 WVFGRD96 94.0 355 20 110 5.97 0.1556 WVFGRD96 96.0 155 70 80 5.97 0.1590 WVFGRD96 98.0 355 20 110 5.98 0.1601 WVFGRD96 100.0 160 70 90 5.99 0.1627 WVFGRD96 102.0 165 75 95 6.00 0.1645 WVFGRD96 104.0 325 15 70 6.01 0.1671 WVFGRD96 106.0 325 15 70 6.02 0.1694 WVFGRD96 108.0 320 15 65 6.02 0.1739
The best solution is
WVFGRD96 18.0 150 65 70 5.66 0.7016
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: