2014/04/15 17:12:19 -20.179 -70.781 15.8 4.7 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/15 17:12:19:0 -20.18 -70.78 15.8 4.7 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.62e+23 dyne-cm Mw = 4.74 Z = 18 km Plane Strike Dip Rake NP1 170 65 90 NP2 350 25 90 Principal Axes: Axis Value Plunge Azimuth T 1.62e+23 70 80 N 0.00e+00 -0 170 P -1.62e+23 20 260 Moment Tensor: (dyne-cm) Component Value Mxx -3.75e+21 Mxy -2.12e+22 Mxz 1.81e+22 Myy -1.20e+23 Myz 1.03e+23 Mzz 1.24e+23 ---######----- ------###########----- --------##############------ ---------################----- ----------###################----- -----------####################----- ------------#####################----- -------------######################----- -------------######################----- --------------########### #########----- --------------########### T #########----- --- ---------########## #########----- --- P ---------######################----- -- ----------#####################---- ---------------####################----- ---------------###################---- --------------##################---- --------------################---- -------------##############--- -------------###########---- ------------#######--- ---------####- Global CMT Convention Moment Tensor: R T P 1.24e+23 1.81e+22 -1.03e+23 1.81e+22 -3.75e+21 2.12e+22 -1.03e+23 2.12e+22 -1.20e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415171219/index.html |
STK = 170 DIP = 65 RAKE = 90 MW = 4.74 HS = 18.0
The NDK file is 20140415171219.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/15 17:12:19:0 -20.18 -70.78 15.8 4.7 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.62e+23 dyne-cm Mw = 4.74 Z = 18 km Plane Strike Dip Rake NP1 170 65 90 NP2 350 25 90 Principal Axes: Axis Value Plunge Azimuth T 1.62e+23 70 80 N 0.00e+00 -0 170 P -1.62e+23 20 260 Moment Tensor: (dyne-cm) Component Value Mxx -3.75e+21 Mxy -2.12e+22 Mxz 1.81e+22 Myy -1.20e+23 Myz 1.03e+23 Mzz 1.24e+23 ---######----- ------###########----- --------##############------ ---------################----- ----------###################----- -----------####################----- ------------#####################----- -------------######################----- -------------######################----- --------------########### #########----- --------------########### T #########----- --- ---------########## #########----- --- P ---------######################----- -- ----------#####################---- ---------------####################----- ---------------###################---- --------------##################---- --------------################---- -------------##############--- -------------###########---- ------------#######--- ---------####- Global CMT Convention Moment Tensor: R T P 1.24e+23 1.81e+22 -1.03e+23 1.81e+22 -3.75e+21 2.12e+22 -1.03e+23 2.12e+22 -1.20e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415171219/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 155 45 -90 4.47 0.3841 WVFGRD96 4.0 170 90 80 4.58 0.3172 WVFGRD96 6.0 350 90 -85 4.58 0.4667 WVFGRD96 8.0 170 85 85 4.66 0.5583 WVFGRD96 10.0 170 75 90 4.68 0.6492 WVFGRD96 12.0 170 70 90 4.70 0.7221 WVFGRD96 14.0 170 70 90 4.71 0.7745 WVFGRD96 16.0 170 65 90 4.73 0.8024 WVFGRD96 18.0 170 65 90 4.74 0.8131 WVFGRD96 20.0 170 65 90 4.74 0.8088 WVFGRD96 22.0 350 25 90 4.76 0.7955 WVFGRD96 24.0 355 25 95 4.77 0.7732 WVFGRD96 26.0 365 20 105 4.78 0.7457 WVFGRD96 28.0 170 70 85 4.78 0.7133 WVFGRD96 30.0 170 70 85 4.79 0.6765 WVFGRD96 32.0 170 70 85 4.79 0.6364 WVFGRD96 34.0 170 70 85 4.80 0.5944 WVFGRD96 36.0 170 70 85 4.80 0.5527 WVFGRD96 38.0 170 70 85 4.80 0.5136 WVFGRD96 40.0 170 80 85 4.94 0.4834 WVFGRD96 42.0 170 75 85 4.93 0.4423 WVFGRD96 44.0 370 15 110 4.93 0.4047 WVFGRD96 46.0 170 75 85 4.93 0.3712 WVFGRD96 48.0 170 70 85 4.93 0.3416 WVFGRD96 50.0 365 20 105 4.94 0.3152 WVFGRD96 52.0 145 60 60 4.94 0.2928 WVFGRD96 54.0 145 60 60 4.94 0.2766 WVFGRD96 56.0 150 60 65 4.94 0.2620 WVFGRD96 58.0 125 70 50 4.95 0.2501 WVFGRD96 60.0 130 70 50 4.94 0.2392 WVFGRD96 62.0 120 50 25 4.97 0.2327 WVFGRD96 64.0 125 50 35 4.97 0.2296 WVFGRD96 66.0 130 50 40 4.97 0.2286 WVFGRD96 68.0 130 50 40 4.98 0.2306 WVFGRD96 70.0 135 50 50 4.98 0.2278 WVFGRD96 72.0 135 50 50 4.99 0.2313 WVFGRD96 74.0 130 55 45 4.99 0.2303 WVFGRD96 76.0 135 55 50 5.00 0.2326 WVFGRD96 78.0 135 55 50 5.00 0.2332 WVFGRD96 80.0 140 55 60 5.01 0.2340 WVFGRD96 82.0 135 55 50 5.01 0.2346 WVFGRD96 84.0 140 55 55 5.01 0.2361 WVFGRD96 86.0 140 55 55 5.01 0.2360 WVFGRD96 88.0 140 55 55 5.01 0.2347 WVFGRD96 90.0 150 45 55 5.01 0.2413 WVFGRD96 92.0 150 50 60 5.01 0.2409 WVFGRD96 94.0 150 50 60 5.02 0.2453 WVFGRD96 96.0 155 50 65 5.02 0.2509 WVFGRD96 98.0 155 50 65 5.02 0.2536 WVFGRD96 100.0 155 50 65 5.03 0.2579 WVFGRD96 102.0 165 45 75 5.02 0.2601 WVFGRD96 104.0 165 45 75 5.02 0.2611 WVFGRD96 106.0 165 50 80 5.03 0.2654 WVFGRD96 108.0 165 50 80 5.03 0.2701
The best solution is
WVFGRD96 18.0 170 65 90 4.74 0.8131
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: