2014/04/15 16:21:16 -20.160 -70.754 10.4 5.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/15 16:21:16:0 -20.16 -70.75 10.4 5.5 Chile Stations used: C.GO01 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.72e+23 dyne-cm Mw = 4.98 Z = 10 km Plane Strike Dip Rake NP1 98 50 113 NP2 245 45 65 Principal Axes: Axis Value Plunge Azimuth T 3.72e+23 72 74 N 0.00e+00 17 263 P -3.72e+23 3 172 Moment Tensor: (dyne-cm) Component Value Mxx -3.62e+23 Mxy 5.76e+22 Mxz 4.69e+22 Myy 2.49e+22 Myz 1.01e+23 Mzz 3.37e+23 -------------- ---------------------- ---------------------------- ------------------------------ -----------------############----- -------------######################- -----------########################### ---------############################### -------################################# #------################ ################ ##---################## T ################ ###-################### ################ ###-###################################### ##----#################################- #-------#############################--- -----------#####################------ -------------------####------------- ---------------------------------- ------------------------------ ---------------------------- ------------ ------- -------- P --- Global CMT Convention Moment Tensor: R T P 3.37e+23 4.69e+22 -1.01e+23 4.69e+22 -3.62e+23 -5.76e+22 -1.01e+23 -5.76e+22 2.49e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415162116/index.html |
STK = 245 DIP = 45 RAKE = 65 MW = 4.98 HS = 10.0
The NDK file is 20140415162116.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/15 16:21:16:0 -20.16 -70.75 10.4 5.5 Chile Stations used: C.GO01 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.72e+23 dyne-cm Mw = 4.98 Z = 10 km Plane Strike Dip Rake NP1 98 50 113 NP2 245 45 65 Principal Axes: Axis Value Plunge Azimuth T 3.72e+23 72 74 N 0.00e+00 17 263 P -3.72e+23 3 172 Moment Tensor: (dyne-cm) Component Value Mxx -3.62e+23 Mxy 5.76e+22 Mxz 4.69e+22 Myy 2.49e+22 Myz 1.01e+23 Mzz 3.37e+23 -------------- ---------------------- ---------------------------- ------------------------------ -----------------############----- -------------######################- -----------########################### ---------############################### -------################################# #------################ ################ ##---################## T ################ ###-################### ################ ###-###################################### ##----#################################- #-------#############################--- -----------#####################------ -------------------####------------- ---------------------------------- ------------------------------ ---------------------------- ------------ ------- -------- P --- Global CMT Convention Moment Tensor: R T P 3.37e+23 4.69e+22 -1.01e+23 4.69e+22 -3.62e+23 -5.76e+22 -1.01e+23 -5.76e+22 2.49e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415162116/index.html |
April 15, 2014, NEAR COAST OF NORTHERN CHILE, MW=5.1 Howard Koss CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201404151621A DATA: II DK IU MN G CU LD GE KP IC L.P.BODY WAVES: 71S, 83C, T= 40 SURFACE WAVES: 115S, 173C, T= 50 TIMESTAMP: Q-20140415144455 CENTROID LOCATION: ORIGIN TIME: 16:21:22.0 0.2 LAT:20.21S 0.01;LON: 70.70W 0.02 DEP: 12.7 0.6;TRIANG HDUR: 0.9 MOMENT TENSOR: SCALE 10**23 D-CM RR= 5.460 0.206; TT=-5.300 0.139 PP=-0.166 0.168; RT=-1.940 0.336 RP= 3.150 0.601; TP=-0.194 0.119 PRINCIPAL AXES: 1.(T) VAL= 7.146;PLG=65;AZM=250 2.(N) -1.486; 22; 99 3.(P) -5.666; 11; 4 BEST DBLE.COUPLE:M0= 6.41*10**23 NP1: STRIKE= 69;DIP=39;SLIP= 53 NP2: STRIKE=293;DIP=60;SLIP= 116 ----- P --- --------- ------- ----------------------- --------------------------- ----------------------------- ################--------------- ####################----------- ########################-------## ########## ##############----## ########## T ###############--### ########## ################-### ##########################----# -#######################------- --###################-------- -----##########------------ ----------------------- ------------------- ----------- |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 30 85 10 4.65 0.4040 WVFGRD96 4.0 220 40 15 4.80 0.4568 WVFGRD96 6.0 230 50 40 4.84 0.5486 WVFGRD96 8.0 240 45 60 4.95 0.6431 WVFGRD96 10.0 245 45 65 4.98 0.7032 WVFGRD96 12.0 245 45 65 4.98 0.6853 WVFGRD96 14.0 225 55 35 4.95 0.6467 WVFGRD96 16.0 225 60 30 4.95 0.6067 WVFGRD96 18.0 225 60 30 4.95 0.5700 WVFGRD96 20.0 220 65 20 4.96 0.5356 WVFGRD96 22.0 220 65 20 4.97 0.5050 WVFGRD96 24.0 220 65 20 4.98 0.4747 WVFGRD96 26.0 220 65 15 4.99 0.4478 WVFGRD96 28.0 220 65 15 5.00 0.4227 WVFGRD96 30.0 220 70 15 5.01 0.3999 WVFGRD96 32.0 220 70 15 5.02 0.3785 WVFGRD96 34.0 220 70 15 5.03 0.3588 WVFGRD96 36.0 220 75 15 5.04 0.3417 WVFGRD96 38.0 220 75 15 5.06 0.3289 WVFGRD96 40.0 215 80 20 5.12 0.3207 WVFGRD96 42.0 215 80 15 5.13 0.3135 WVFGRD96 44.0 215 80 15 5.14 0.3056 WVFGRD96 46.0 215 80 15 5.15 0.2977 WVFGRD96 48.0 215 80 15 5.16 0.2907 WVFGRD96 50.0 215 85 20 5.17 0.2842 WVFGRD96 52.0 215 80 15 5.18 0.2789 WVFGRD96 54.0 120 90 -20 5.20 0.2717 WVFGRD96 56.0 120 90 -20 5.21 0.2729 WVFGRD96 58.0 120 90 -20 5.22 0.2715 WVFGRD96 60.0 300 90 20 5.23 0.2731 WVFGRD96 62.0 120 90 -15 5.23 0.2741 WVFGRD96 64.0 120 90 -15 5.24 0.2728 WVFGRD96 66.0 120 80 -20 5.25 0.2689 WVFGRD96 68.0 120 80 -15 5.26 0.2702 WVFGRD96 70.0 120 80 -15 5.26 0.2708 WVFGRD96 72.0 120 80 -15 5.27 0.2724 WVFGRD96 74.0 210 80 5 5.27 0.2702 WVFGRD96 76.0 210 80 0 5.26 0.2718 WVFGRD96 78.0 35 70 -30 5.27 0.2769 WVFGRD96 80.0 35 65 -35 5.28 0.2792 WVFGRD96 82.0 35 60 -35 5.28 0.2829 WVFGRD96 84.0 35 60 -35 5.28 0.2865 WVFGRD96 86.0 20 40 -60 5.29 0.2886 WVFGRD96 88.0 25 40 -55 5.29 0.2929 WVFGRD96 90.0 25 40 -55 5.30 0.2962 WVFGRD96 92.0 20 35 -60 5.31 0.2997 WVFGRD96 94.0 20 35 -60 5.31 0.3028 WVFGRD96 96.0 20 35 -60 5.31 0.3060 WVFGRD96 98.0 25 35 -55 5.31 0.3087 WVFGRD96 100.0 25 35 -55 5.32 0.3120 WVFGRD96 102.0 20 30 -60 5.32 0.3144 WVFGRD96 104.0 20 30 -60 5.33 0.3174 WVFGRD96 106.0 20 30 -60 5.33 0.3197 WVFGRD96 108.0 20 30 -60 5.33 0.3226
The best solution is
WVFGRD96 10.0 245 45 65 4.98 0.7032
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: