2014/04/15 16:09:34 -20.227 -70.831 18.7 5.2 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/15 16:09:34:0 -20.23 -70.83 18.7 5.2 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.68e+23 dyne-cm Mw = 5.15 Z = 20 km Plane Strike Dip Rake NP1 170 65 90 NP2 350 25 90 Principal Axes: Axis Value Plunge Azimuth T 6.68e+23 70 80 N 0.00e+00 -0 350 P -6.68e+23 20 260 Moment Tensor: (dyne-cm) Component Value Mxx -1.54e+22 Mxy -8.76e+22 Mxz 7.46e+22 Myy -4.97e+23 Myz 4.23e+23 Mzz 5.12e+23 ---######----- ------###########----- --------##############------ ---------################----- ----------###################----- -----------####################----- ------------#####################----- -------------######################----- -------------######################----- --------------########### #########----- --------------########### T #########----- --- ---------########## #########----- --- P ---------######################----- -- ----------#####################---- ---------------####################----- ---------------###################---- --------------##################---- --------------################---- -------------##############--- -------------###########---- ------------#######--- ---------####- Global CMT Convention Moment Tensor: R T P 5.12e+23 7.46e+22 -4.23e+23 7.46e+22 -1.54e+22 8.76e+22 -4.23e+23 8.76e+22 -4.97e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415160934/index.html |
STK = 350 DIP = 25 RAKE = 90 MW = 5.15 HS = 20.0
The NDK file is 20140415160934.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/15 16:09:34:0 -20.23 -70.83 18.7 5.2 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.68e+23 dyne-cm Mw = 5.15 Z = 20 km Plane Strike Dip Rake NP1 170 65 90 NP2 350 25 90 Principal Axes: Axis Value Plunge Azimuth T 6.68e+23 70 80 N 0.00e+00 -0 350 P -6.68e+23 20 260 Moment Tensor: (dyne-cm) Component Value Mxx -1.54e+22 Mxy -8.76e+22 Mxz 7.46e+22 Myy -4.97e+23 Myz 4.23e+23 Mzz 5.12e+23 ---######----- ------###########----- --------##############------ ---------################----- ----------###################----- -----------####################----- ------------#####################----- -------------######################----- -------------######################----- --------------########### #########----- --------------########### T #########----- --- ---------########## #########----- --- P ---------######################----- -- ----------#####################---- ---------------####################----- ---------------###################---- --------------##################---- --------------################---- -------------##############--- -------------###########---- ------------#######--- ---------####- Global CMT Convention Moment Tensor: R T P 5.12e+23 7.46e+22 -4.23e+23 7.46e+22 -1.54e+22 8.76e+22 -4.23e+23 8.76e+22 -4.97e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415160934/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 335 50 -90 4.89 0.4033 WVFGRD96 4.0 350 80 -80 4.99 0.3261 WVFGRD96 6.0 170 90 85 4.99 0.4677 WVFGRD96 8.0 170 90 85 5.07 0.5564 WVFGRD96 10.0 370 10 110 5.07 0.6405 WVFGRD96 12.0 355 15 95 5.09 0.7130 WVFGRD96 14.0 170 70 90 5.11 0.7718 WVFGRD96 16.0 345 25 85 5.13 0.8118 WVFGRD96 18.0 350 25 90 5.14 0.8319 WVFGRD96 20.0 350 25 90 5.15 0.8351 WVFGRD96 22.0 350 25 90 5.17 0.8266 WVFGRD96 24.0 350 25 90 5.18 0.8086 WVFGRD96 26.0 170 65 90 5.19 0.7831 WVFGRD96 28.0 170 65 90 5.19 0.7520 WVFGRD96 30.0 170 65 90 5.20 0.7157 WVFGRD96 32.0 355 25 95 5.20 0.6755 WVFGRD96 34.0 170 65 90 5.21 0.6324 WVFGRD96 36.0 170 65 90 5.22 0.5887 WVFGRD96 38.0 165 70 80 5.22 0.5478 WVFGRD96 40.0 360 15 100 5.35 0.5118 WVFGRD96 42.0 170 70 90 5.35 0.4719 WVFGRD96 44.0 170 70 85 5.35 0.4356 WVFGRD96 46.0 170 70 85 5.35 0.4018 WVFGRD96 48.0 170 70 85 5.35 0.3705 WVFGRD96 50.0 170 70 85 5.35 0.3415 WVFGRD96 52.0 170 75 -75 5.37 0.3236 WVFGRD96 54.0 170 75 -75 5.37 0.3096 WVFGRD96 56.0 170 75 -75 5.38 0.2957 WVFGRD96 58.0 170 80 -75 5.38 0.2817 WVFGRD96 60.0 170 80 -75 5.38 0.2684 WVFGRD96 62.0 170 80 -75 5.38 0.2577 WVFGRD96 64.0 170 85 -75 5.38 0.2489 WVFGRD96 66.0 335 75 60 5.38 0.2470 WVFGRD96 68.0 335 70 60 5.38 0.2481 WVFGRD96 70.0 335 70 60 5.39 0.2478 WVFGRD96 72.0 340 65 65 5.39 0.2515 WVFGRD96 74.0 335 65 60 5.39 0.2496 WVFGRD96 76.0 350 60 85 5.41 0.2640 WVFGRD96 78.0 350 60 85 5.41 0.2697 WVFGRD96 80.0 345 60 80 5.42 0.2829 WVFGRD96 82.0 350 55 85 5.42 0.2856 WVFGRD96 84.0 175 35 95 5.43 0.3012 WVFGRD96 86.0 175 35 95 5.44 0.3064 WVFGRD96 88.0 350 50 90 5.44 0.3117 WVFGRD96 90.0 170 40 90 5.45 0.3227 WVFGRD96 92.0 170 40 90 5.45 0.3316 WVFGRD96 94.0 170 40 90 5.46 0.3313 WVFGRD96 96.0 355 50 95 5.46 0.3396 WVFGRD96 98.0 170 45 90 5.46 0.3416 WVFGRD96 100.0 350 45 90 5.47 0.3472 WVFGRD96 102.0 350 45 90 5.47 0.3500 WVFGRD96 104.0 170 45 90 5.47 0.3500 WVFGRD96 106.0 170 45 90 5.47 0.3514 WVFGRD96 108.0 170 45 90 5.47 0.3522
The best solution is
WVFGRD96 20.0 350 25 90 5.15 0.8351
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: