Location

2014/04/15 16:09:34 -20.227 -70.831 18.7 5.2 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/15 16:09:34:0 -20.23  -70.83  18.7 5.2 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 
   CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 
   CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.68e+23 dyne-cm
  Mw = 5.15 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      170    65    90
   NP2      350    25    90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.68e+23     70      80
    N   0.00e+00     -0     350
    P  -6.68e+23     20     260

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.54e+22
       Mxy    -8.76e+22
       Mxz     7.46e+22
       Myy    -4.97e+23
       Myz     4.23e+23
       Mzz     5.12e+23
                                                     
                                                     
                                                     
                                                     
                     ---######-----                  
                 ------###########-----              
              --------##############------           
             ---------################-----          
           ----------###################-----        
          -----------####################-----       
         ------------#####################-----      
        -------------######################-----     
        -------------######################-----     
       --------------###########   #########-----    
       --------------########### T #########-----    
       ---   ---------##########   #########-----    
       --- P ---------######################-----    
        --   ----------#####################----     
        ---------------####################-----     
         ---------------###################----      
          --------------##################----       
           --------------################----        
             -------------##############---          
              -------------###########----           
                 ------------#######---              
                     ---------####-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.12e+23   7.46e+22  -4.23e+23 
  7.46e+22  -1.54e+22   8.76e+22 
 -4.23e+23   8.76e+22  -4.97e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415160934/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 350
      DIP = 25
     RAKE = 90
       MW = 5.15
       HS = 20.0

The NDK file is 20140415160934.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/15 16:09:34:0 -20.23  -70.83  18.7 5.2 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 
   CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 
   CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.68e+23 dyne-cm
  Mw = 5.15 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      170    65    90
   NP2      350    25    90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.68e+23     70      80
    N   0.00e+00     -0     350
    P  -6.68e+23     20     260

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.54e+22
       Mxy    -8.76e+22
       Mxz     7.46e+22
       Myy    -4.97e+23
       Myz     4.23e+23
       Mzz     5.12e+23
                                                     
                                                     
                                                     
                                                     
                     ---######-----                  
                 ------###########-----              
              --------##############------           
             ---------################-----          
           ----------###################-----        
          -----------####################-----       
         ------------#####################-----      
        -------------######################-----     
        -------------######################-----     
       --------------###########   #########-----    
       --------------########### T #########-----    
       ---   ---------##########   #########-----    
       --- P ---------######################-----    
        --   ----------#####################----     
        ---------------####################-----     
         ---------------###################----      
          --------------##################----       
           --------------################----        
             -------------##############---          
              -------------###########----           
                 ------------#######---              
                     ---------####-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.12e+23   7.46e+22  -4.23e+23 
  7.46e+22  -1.54e+22   8.76e+22 
 -4.23e+23   8.76e+22  -4.97e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140415160934/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   335    50   -90   4.89 0.4033
WVFGRD96    4.0   350    80   -80   4.99 0.3261
WVFGRD96    6.0   170    90    85   4.99 0.4677
WVFGRD96    8.0   170    90    85   5.07 0.5564
WVFGRD96   10.0   370    10   110   5.07 0.6405
WVFGRD96   12.0   355    15    95   5.09 0.7130
WVFGRD96   14.0   170    70    90   5.11 0.7718
WVFGRD96   16.0   345    25    85   5.13 0.8118
WVFGRD96   18.0   350    25    90   5.14 0.8319
WVFGRD96   20.0   350    25    90   5.15 0.8351
WVFGRD96   22.0   350    25    90   5.17 0.8266
WVFGRD96   24.0   350    25    90   5.18 0.8086
WVFGRD96   26.0   170    65    90   5.19 0.7831
WVFGRD96   28.0   170    65    90   5.19 0.7520
WVFGRD96   30.0   170    65    90   5.20 0.7157
WVFGRD96   32.0   355    25    95   5.20 0.6755
WVFGRD96   34.0   170    65    90   5.21 0.6324
WVFGRD96   36.0   170    65    90   5.22 0.5887
WVFGRD96   38.0   165    70    80   5.22 0.5478
WVFGRD96   40.0   360    15   100   5.35 0.5118
WVFGRD96   42.0   170    70    90   5.35 0.4719
WVFGRD96   44.0   170    70    85   5.35 0.4356
WVFGRD96   46.0   170    70    85   5.35 0.4018
WVFGRD96   48.0   170    70    85   5.35 0.3705
WVFGRD96   50.0   170    70    85   5.35 0.3415
WVFGRD96   52.0   170    75   -75   5.37 0.3236
WVFGRD96   54.0   170    75   -75   5.37 0.3096
WVFGRD96   56.0   170    75   -75   5.38 0.2957
WVFGRD96   58.0   170    80   -75   5.38 0.2817
WVFGRD96   60.0   170    80   -75   5.38 0.2684
WVFGRD96   62.0   170    80   -75   5.38 0.2577
WVFGRD96   64.0   170    85   -75   5.38 0.2489
WVFGRD96   66.0   335    75    60   5.38 0.2470
WVFGRD96   68.0   335    70    60   5.38 0.2481
WVFGRD96   70.0   335    70    60   5.39 0.2478
WVFGRD96   72.0   340    65    65   5.39 0.2515
WVFGRD96   74.0   335    65    60   5.39 0.2496
WVFGRD96   76.0   350    60    85   5.41 0.2640
WVFGRD96   78.0   350    60    85   5.41 0.2697
WVFGRD96   80.0   345    60    80   5.42 0.2829
WVFGRD96   82.0   350    55    85   5.42 0.2856
WVFGRD96   84.0   175    35    95   5.43 0.3012
WVFGRD96   86.0   175    35    95   5.44 0.3064
WVFGRD96   88.0   350    50    90   5.44 0.3117
WVFGRD96   90.0   170    40    90   5.45 0.3227
WVFGRD96   92.0   170    40    90   5.45 0.3316
WVFGRD96   94.0   170    40    90   5.46 0.3313
WVFGRD96   96.0   355    50    95   5.46 0.3396
WVFGRD96   98.0   170    45    90   5.46 0.3416
WVFGRD96  100.0   350    45    90   5.47 0.3472
WVFGRD96  102.0   350    45    90   5.47 0.3500
WVFGRD96  104.0   170    45    90   5.47 0.3500
WVFGRD96  106.0   170    45    90   5.47 0.3514
WVFGRD96  108.0   170    45    90   5.47 0.3522

The best solution is

WVFGRD96   20.0   350    25    90   5.15 0.8351

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Tue Apr 15 14:58:26 CDT 2014