2014/04/14 05:56:18 -20.764 -70.694 15.4 5.3 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/14 05:56:18:0 -20.76 -70.69 15.4 5.3 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.03e+23 dyne-cm Mw = 5.12 Z = 18 km Plane Strike Dip Rake NP1 170 70 88 NP2 355 20 95 Principal Axes: Axis Value Plunge Azimuth T 6.03e+23 65 77 N 0.00e+00 2 170 P -6.03e+23 25 261 Moment Tensor: (dyne-cm) Component Value Mxx -6.05e+21 Mxy -5.12e+22 Mxz 8.92e+22 Myy -3.80e+23 Myz 4.54e+23 Mzz 3.86e+23 ---########--- ------############---- ---------###############---- ---------#################---- -----------###################---- ------------####################---- -------------#####################---- --------------######################---- --------------######################---- ---------------########### #########---- ----------------########## T #########---- ---- ---------########## #########---- ---- P ---------######################---- --- ----------####################---- ----------------####################---- ----------------##################---- ----------------#################--- ---------------###############---- --------------#############--- --------------##########---- ------------#######--- ----------##-- Global CMT Convention Moment Tensor: R T P 3.86e+23 8.92e+22 -4.54e+23 8.92e+22 -6.05e+21 5.12e+22 -4.54e+23 5.12e+22 -3.80e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140414055618/index.html |
STK = 355 DIP = 20 RAKE = 95 MW = 5.12 HS = 18.0
The NDK file is 20140414055618.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/14 05:56:18:0 -20.76 -70.69 15.4 5.3 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.03e+23 dyne-cm Mw = 5.12 Z = 18 km Plane Strike Dip Rake NP1 170 70 88 NP2 355 20 95 Principal Axes: Axis Value Plunge Azimuth T 6.03e+23 65 77 N 0.00e+00 2 170 P -6.03e+23 25 261 Moment Tensor: (dyne-cm) Component Value Mxx -6.05e+21 Mxy -5.12e+22 Mxz 8.92e+22 Myy -3.80e+23 Myz 4.54e+23 Mzz 3.86e+23 ---########--- ------############---- ---------###############---- ---------#################---- -----------###################---- ------------####################---- -------------#####################---- --------------######################---- --------------######################---- ---------------########### #########---- ----------------########## T #########---- ---- ---------########## #########---- ---- P ---------######################---- --- ----------####################---- ----------------####################---- ----------------##################---- ----------------#################--- ---------------###############---- --------------#############--- --------------##########---- ------------#######--- ----------##-- Global CMT Convention Moment Tensor: R T P 3.86e+23 8.92e+22 -4.54e+23 8.92e+22 -6.05e+21 5.12e+22 -4.54e+23 5.12e+22 -3.80e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140414055618/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 355 50 90 4.86 0.3771 WVFGRD96 4.0 165 90 75 4.96 0.3287 WVFGRD96 6.0 350 90 -80 4.98 0.4915 WVFGRD96 8.0 170 85 80 5.06 0.5939 WVFGRD96 10.0 170 75 90 5.07 0.6907 WVFGRD96 12.0 355 20 95 5.09 0.7663 WVFGRD96 14.0 170 70 90 5.10 0.8173 WVFGRD96 16.0 170 70 90 5.11 0.8444 WVFGRD96 18.0 355 20 95 5.12 0.8550 WVFGRD96 20.0 350 20 90 5.13 0.8530 WVFGRD96 22.0 170 70 90 5.15 0.8431 WVFGRD96 24.0 350 20 90 5.16 0.8257 WVFGRD96 26.0 345 20 85 5.17 0.8033 WVFGRD96 28.0 340 15 80 5.18 0.7772 WVFGRD96 30.0 340 15 80 5.18 0.7484 WVFGRD96 32.0 335 15 75 5.19 0.7154 WVFGRD96 34.0 335 15 75 5.20 0.6807 WVFGRD96 36.0 330 15 70 5.20 0.6448 WVFGRD96 38.0 325 15 65 5.21 0.6114 WVFGRD96 40.0 335 10 75 5.35 0.5849 WVFGRD96 42.0 340 10 80 5.35 0.5466 WVFGRD96 44.0 330 10 70 5.36 0.5099 WVFGRD96 46.0 330 10 70 5.36 0.4745 WVFGRD96 48.0 315 10 55 5.36 0.4408 WVFGRD96 50.0 305 10 45 5.37 0.4095 WVFGRD96 52.0 300 10 35 5.36 0.3808 WVFGRD96 54.0 160 70 60 5.39 0.3571 WVFGRD96 56.0 160 70 60 5.39 0.3391 WVFGRD96 58.0 155 75 55 5.39 0.3235 WVFGRD96 60.0 155 75 55 5.40 0.3091 WVFGRD96 62.0 160 75 60 5.40 0.2959 WVFGRD96 64.0 160 75 60 5.40 0.2852 WVFGRD96 66.0 165 30 75 5.37 0.2776 WVFGRD96 68.0 165 35 75 5.38 0.2827 WVFGRD96 70.0 290 50 -60 5.38 0.2836 WVFGRD96 72.0 290 50 -60 5.39 0.2874 WVFGRD96 74.0 290 50 -65 5.40 0.2895 WVFGRD96 76.0 285 50 -65 5.40 0.2923 WVFGRD96 78.0 285 50 -70 5.41 0.2958 WVFGRD96 80.0 175 35 -90 5.41 0.2982 WVFGRD96 82.0 190 35 -75 5.42 0.3008 WVFGRD96 84.0 175 40 -90 5.42 0.3068 WVFGRD96 86.0 195 40 -75 5.43 0.3092 WVFGRD96 88.0 190 40 -75 5.43 0.3131 WVFGRD96 90.0 190 40 -75 5.44 0.3173 WVFGRD96 92.0 190 40 -75 5.44 0.3197 WVFGRD96 94.0 190 40 -75 5.45 0.3226 WVFGRD96 96.0 190 40 -75 5.45 0.3237 WVFGRD96 98.0 190 40 -75 5.45 0.3262 WVFGRD96 100.0 190 45 -75 5.46 0.3309 WVFGRD96 102.0 190 45 -75 5.46 0.3372 WVFGRD96 104.0 190 45 -75 5.46 0.3382 WVFGRD96 106.0 190 45 -75 5.47 0.3419 WVFGRD96 108.0 190 45 -75 5.47 0.3439
The best solution is
WVFGRD96 18.0 355 20 95 5.12 0.8550
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: